Skip to main content

Advertisement

Log in

Investigating the Antimicrobial Activities of the Biosynthesized Selenium Nanoparticles and Its Statistical Analysis

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The present investigation concentrates on the green combination of biosynthesized selenium nanoparticles utilizing aqueous extract of cow urine as a green technique with no external chemicals, reagents, or surfactants. The combination of parameters, for example, the sodium selenite precursor concentration, or the concentration of cow urine extract, time of synthesis, and pH on the particle size of combined selenium particles, was explored and enhanced. The participation of the factors in controlling the particle size of reduced SeNPs was quantitatively evaluated by means of analysis of variance (ANOVA). The UV-Vis spectroscopy was utilized to screen the selenium nanoparticle development followed by electron microscopy (SEM and TEM), DLS, AFM, and EDAX. The optimized nanoparticles were subjected to antibacterial activity against Gram-positive and Gram-negative cultures, out of which the highest activity was observed for Klebsiella sp. The biosynthesized and optimized selenium nanoparticles can be further used for various pharmaceutical or industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zonaro, E., Lampis, S., Turner, R. J., Junaid, S., & Vallini, G. (2015). Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Frontiers in Microbiology, 6, 1–11. https://doi.org/10.3389/fmicb.2015.00584.

    Article  Google Scholar 

  2. Ramamurthy, C. H., Sampath, K. S., Arunkumar, P., Kumar, M. S., Sujatha, V., Premkumar, K., & Thirunavukkarasu, C. (2013). Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering, 36, 1131–1139. https://doi.org/10.1007/s00449-012-0867-1.

    Article  Google Scholar 

  3. Kumari, M., Purohit, M. P., Patnaik, S., Shukla, Y., Kumar, P., & Gupta, K. C. (2018). Curcumin loaded selenium nanoparticles synergize the anticancer potential of doxorubicin contained in self-assembled, cell receptor-targeted nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 130, 185–199. https://doi.org/10.1016/j.ejpb.2018.06.030.

    Article  Google Scholar 

  4. Srivastava, P., Braganca, J. M., & Kowshik, M. (2014). In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti-proliferative properties against HeLa cell line. Biotechnology Progress, 30, 1480–1487. https://doi.org/10.1002/btpr.1992.

    Article  Google Scholar 

  5. Radhika Rajasree, S. R., & Gayathri, S. (2015). Extracellular biosynthesis of selenium nanoparticles using some species of Lactobacillus. Indian Journal of Geo-Marine Sciences, 43, 766–775.

    Google Scholar 

  6. Yu, B., You, P., Song, M., Zhou, Y., Yu, F., & Zheng, W. (2016). A facile and fast synthetic approach to create selenium nanoparticles with diverse shapes and their antioxidation ability. New Journal of Chemistry, 40, 1118–1123. https://doi.org/10.1039/c5nj02519b.

    Article  Google Scholar 

  7. Mary, T. A., Shanthi, K., Vimala, K., & Soundarapandian, K. (2016). PEG functionalized selenium nanoparticles as a carrier of crocin to achieve anticancer synergism. RSC Advances, 6, 22936–22949. https://doi.org/10.1039/c5ra25109e.

    Article  Google Scholar 

  8. Zhao, G., Wu, X., Chen, P., Zhang, L., Yang, C. S., & Zhang, J. (2018). Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects. Free Radical Biology & Medicine, 126, 55–66. https://doi.org/10.1016/j.freeradbiomed.2018.07.017.

    Article  Google Scholar 

  9. Weekley, C. M., & Harris, H. H. (2013). Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chemical Society Reviews, 42, 8870–8894. https://doi.org/10.1039/c3cs60272a.

    Article  Google Scholar 

  10. Nazıroğlu, M., Muhamad, S., & Pecze, L. (2017). Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: focus on selenium nanoparticles. Expert Review of Clinical Pharmacology, 10, 773–782. https://doi.org/10.1080/17512433.2017.1324781.

    Article  Google Scholar 

  11. Atta, A. H., El-shenawy, A. I., Koura, F. A., & Refat, M. S. (2014). Synthesis and characterization of some selenium nanometric compounds : spectroscopic. Biological and Antioxidant Assessments, 58–69.

  12. Jia, X., Liu, Q., Zou, S., Xu, X., & Zhang, L. (2015). Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydrate Polymers, 117, 434–442. https://doi.org/10.1016/j.carbpol.2014.09.088.

    Article  Google Scholar 

  13. Kokila, K., Elavarasan, N., & Sujatha, V. (2017). Diospyros Montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New Journal of Chemistry, 41, 7481–7490. https://doi.org/10.1039/c7nj01124e.

    Article  Google Scholar 

  14. Liao, W., Yu, Z., Lin, Z., Lei, Z., Ning, Z., Regenstein, J. M., Yang, J., & Ren, J. (2015). Biofunctionalization of selenium nanoparticle with Dictyophora indusiata polysaccharide and its antiproliferative activity through death-receptor and mitochondria-mediated apoptotic pathways. Scientific Reports, 5, 1–13. https://doi.org/10.1038/srep18629.

    Article  Google Scholar 

  15. Lopez Heras, I. (2014). Effect of chitosan-stabilized selenium nanoparticles on cell cycle arrest and invasiveness in hepatocarcinoma cells revealed by quantitative proteomics. Journal of Nanoscience and Nanotechnology, 05. https://doi.org/10.4172/2157-7439.1000226.

  16. Cui, Y. H., Li, L. L., Zhou, N. Q., Liu, J. H., Huang, Q., Wang, H. J., Tian, J., & Yu, H. Q. (2016). In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme and Microbial Technology, 95, 185–191. https://doi.org/10.1016/j.enzmictec.2016.08.017.

    Article  Google Scholar 

  17. Fesharaki, P. J., Nazari, P., Shakibaie, M., Rezaie, S., Banoee, M., Abdollahi, M., & Shahverdi, A. R. (2010). Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Brazilian Journal of Microbiology, 41, 461–466. https://doi.org/10.1590/S1517-83822010000200028.

    Article  Google Scholar 

  18. Srivastava, P., & Kowshik, M. (2016). Anti-neoplastic selenium nanoparticles from Idiomarina sp. PR58–8. Enzyme and Microbial Technology, 95, 192–200. https://doi.org/10.1016/j.enzmictec.2016.08.002.

    Article  Google Scholar 

  19. Modrzejewska-Sikorska, A., Konował, E., Klapiszewski, Ł., Nowaczyk, G., Jurga, S., Jesionowski, T., & Milczarek, G. (2017). Lignosulfonate-stabilized selenium nanoparticles and their deposition on spherical silica. International Journal of Biological Macromolecules, 103, 403–408. https://doi.org/10.1016/j.ijbiomac.2017.05.083.

    Article  Google Scholar 

  20. Prabhu, M., Mutnuri, S., Dubey, S. K., & Naik, M. M. (2014). One-pot rapid synthesis of face-centered cubic silver nanoparticles using fermented cow urine, a nanoweapon against fungal and bacterial pathogens. Journal of Bionanoscience, 8, 265–273. https://doi.org/10.1166/jbns.2014.1235.

    Article  Google Scholar 

  21. Jain, N., Bhosale, P., Tale, V., Henry, R., & Pawar, J. (2019). Hydrothermal assisted the biological synthesis of silver nanoparticles by using honey and gomutra (Cow urine) for qualitative determination of its antibacterial efficacy against pseudomonas sp.isolated from contact lenses. EurAsian Journal of BioSciences, 13, 27–33.

    Google Scholar 

  22. Randhawa, G., & Sharma, R. (2015). Chemotherapeutic potential of cow urine and uses; a review. Journal of Intercultural Ethnopharmacology, 4, 180. https://doi.org/10.5455/jice.20150222100320.

    Article  Google Scholar 

  23. Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., & Adam, V. (2017). Selenium nanoparticles as a nutritional supplement. Nutrition., 33, 83–90. https://doi.org/10.1016/j.nut.2016.05.001.

    Article  Google Scholar 

  24. Wadhwani, S. A., Shedbalkar, U. U., Singh, R., & Chopade, B. A. (2016). Biogenic selenium nanoparticles: current status and future prospects. Applied Microbiology and Biotechnology, 100, 2555–2566. https://doi.org/10.1007/s00253-016-7300-7.

    Article  Google Scholar 

  25. Chudobova, D., Cihalova, K., Dostalova, S., Ruttkay-Nedecky, B., Merlos Rodrigo, M. A., Tmejova, K., Kopel, P., Nejdl, L., Kudr, J., Gumulec, J., Krizkova, S., Kynicky, J., Kizek, R., & Adam, V. (2014). Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiology Letters, 351, 195–201. https://doi.org/10.1111/1574-6968.12353.

    Article  Google Scholar 

  26. Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2015). Box-Behnken experimental design for preparation and optimization of ciprofloxacin hydrochloride-loaded CaCO3nanoparticles. Journal of Drug Delivery Science and Technology, 29, 125–131. https://doi.org/10.1016/j.jddst.2015.06.015.

    Article  Google Scholar 

  27. Venugopal, V., Kumar, K. J., Muralidharan, S., Parasuraman, S., Raj, P. V., & Kumar, K. V. (2016). Optimization and in-vivo evaluation of isradipine nanoparticles using Box-Behnken design surface response methodology. OpenNano., 1, 1–15. https://doi.org/10.1016/j.onano.2016.03.002.

    Article  Google Scholar 

  28. Chhabria, S., & Desai, K. (2016). Selenium nanoparticles and their applications. Encyclopedia of Nanoscience and Nanotechnology, 1–32.

  29. Menon, S., Ks, S. D., Santhiya, R., Rajeshkumar, S., & S, V. K. (2018). Selenium nanoparticles: a potent chemotherapeutic agent and an elucidation of its mechanism. Colloids and Surfaces. B, Biointerfaces, 170, 280–292. https://doi.org/10.1016/j.colsurfb.2018.06.006.

    Article  Google Scholar 

  30. Menon, S., Shrudhi, S. D., Agarwal, H., & Shanmugam, V. K. (2019). Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid and Interface Science Communications, 29, 1–8. https://doi.org/10.1016/j.colcom.2018.12.004.

    Article  Google Scholar 

  31. Kora, A. J., & Rastogi, L. (2016). Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: an approach for conversion of selenite. Journal of Environmental Management, 181, 231–236. https://doi.org/10.1016/j.jenvman.2016.06.029.

    Article  Google Scholar 

  32. Srivastava, N., & Mukhopadhyay, M. (2013). Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technology, 244, 26–29. https://doi.org/10.1016/j.powtec.2013.03.050.

    Article  Google Scholar 

  33. Sharma, G., Sharma, A. R., Bhavesh, R., Park, J., Ganbold, B., Nam, J. S., & Lee, S. S. (2014). Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules., 19, 2761–2770. https://doi.org/10.3390/molecules19032761.

    Article  Google Scholar 

  34. Rajeshkumar, S., Malarkodi, C., Vanaja, M., Gnanajobitha, G., Paulkumar, K., Kannan, C., & Annadurai, G. (2013). Antibacterial activity of algae mediated synthesis of gold nanoparticles from turbinaria conoides. Der Pharma Chemica, 5, 224–229.

    Google Scholar 

  35. Zhang, S. Y., Zhang, J., Wang, H. Y., & Chen, H. Y. (2004). Synthesis of selenium nanoparticles in the presence of polysaccharides. Materials Letters, 58, 2590–2594. https://doi.org/10.1016/j.matlet.2004.03.031.

    Article  Google Scholar 

  36. Bidkar, A. P., Sanpui, P., & Ghosh, S. S. (2017). Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles. Nanomedicine., 12, 2641–2652. https://doi.org/10.2217/nnm-2017-0189.

    Article  Google Scholar 

  37. Yuvakkumar, R., Suresh, J., Nathanael, A. J., Sundrarajan, M., & Hong, S. I. (2014). Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Materials Science and Engineering: C, 41, 17–27. https://doi.org/10.1016/j.msec.2014.04.025.

    Article  Google Scholar 

  38. Chen, X., Cai, K., Fang, J., Lai, M., Hou, Y., Li, J., Luo, Z., Hu, Y., & Tang, L. (2013). Fabrication of selenium-deposited and chitosan-coated titania nanotubes with anticancer and antibacterial properties. Colloids and Surfaces. B, Biointerfaces, 103, 149–157. https://doi.org/10.1016/j.colsurfb.2012.10.022.

    Article  Google Scholar 

  39. Shoeibi, S., & Mashreghi, M. (2017). Biosynthesis of selenium nanoparticles using enterococcus faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in Medicine and Biology, 39, 135–139. https://doi.org/10.1016/j.jtemb.2016.09.003.

    Article  Google Scholar 

Download references

Acknowledgments

The authors did not face any discrepancy while doing the work and would like to thank the Vellore Institute of Technology for encouragement, seed fund, and support bestowed upon us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkat Kumar Shanmugam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants or Animals

None.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menon, S., Agarwal, H., Rajeshkumar, S. et al. Investigating the Antimicrobial Activities of the Biosynthesized Selenium Nanoparticles and Its Statistical Analysis. BioNanoSci. 10, 122–135 (2020). https://doi.org/10.1007/s12668-019-00710-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00710-3

Keywords

Navigation