Skip to main content
Log in

Antibacterial Activity and Cytotoxicity of Silver Chloride/Silver Nanocomposite Synthesized by a Bacterium Isolated from Antarctic Soil

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

This study aims to describe the antibacterial and cytotoxic properties of a nanocomposite composed of silver chloride and silver nanoparticles (AgCl/Ag) biogenically synthesized using Arthrobacter sp., a non-pathogenic Antarctic soil bacterium. Spherical nanoparticles (hydrodynamic size of 42 nm) coated with biomolecules derived from Arthrobacter sp. were obtained. The antibacterial activity of the nanocomposite was demonstrated against Gram-positive and Gram-negative bacterial strains, including the multidrug-resistant Pseudomonas aeruginosa KPC 37. Furthermore, the cytotoxicity of AgCl/Ag nanocomposite was evaluated against the non-tumoral (Vero) and tumoral (SW-1353) cell lines. The nanocomposite was not cytotoxic to the Vero cells at concentrations below 150 μg/mL, whereas at concentrations above 25 μg/mL, a significant cytotoxic effect was observed for the SW-1353 cells. Interestingly, at 150 μg/mL, the nanocomposite demonstrated a potent antibacterial activity for all bacterial strains evaluated. To the best of our knowledge, this is the first report describing the green synthesis of AgCl/Ag nanocomposite by the bacterium Arthrobacter sp. isolated from Antarctic soil. The obtained nanocomposite may find important biomedical applications, with potent antibacterial and antitumoral effects and low toxicity to healthy cells.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kanmani, P., & Lim, S. T. (2013). Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochemistry, 48(7), 1099–1106.

    Google Scholar 

  2. Raza, M., Kanwal, Z., Rauf, A., Sabri, A., Riaz, S., & Naseem, S. (2016). Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials, 6(4), 74.

    Google Scholar 

  3. Daneu, N., Baláz, L., Dutková, E., Tkác, L., Brianc, J., Zorkovská, A., & Baláz, P. (2017). Bio-mechanochemical synthesis of silver nanoparticles with antibacterial activity. Advanced Powder Technology, 28, 3307–3312.

    Google Scholar 

  4. Ratyakshi, & Chauhan, R. P. (2009). Colloidal synthesis of silver nano particles. Asian Journal of Chemistry, 21(10), 113–116.

    Google Scholar 

  5. Liu, C., Yang, D., Wang, Y., Shi, J., & Jiang, Z. (2012). Fabrication of antimicrobial bacterial cellulose-Ag/AgCl nanocomposite using bacteria as versatile biofactory. Journal of Nanoparticle Research, 14, 1084.

    Google Scholar 

  6. Tareq, F. K., Fayzunnesa, M., & Kabir, M. S. (2017). Antimicrobial activity of plant-median synthesized silver nanoparticles against food and agricultural pathogens. Microbial Pathogenesis, 109, 228–232.

    Google Scholar 

  7. Zhang, X.-F., Liu, Z.-G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534.

    Google Scholar 

  8. Trinh, N. D., Nguyen, T. T. B., & Nguyen, T. H. (2015). Preparation and characterization of silver chloride nanoparticles as an antibacterial agent. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(4), 45011.

    Google Scholar 

  9. Wang, X., Han, Q., Yu, N., Wang, T., Wang, C., & Yang, R. (2018). GO-AgCl/Ag nanocomposites with enhanced visible light-driven catalytic properties for antibacterial and biofilm-disrupting applications. Colloids and Surfaces B: Biointerfaces, 162, 296–305.

    Google Scholar 

  10. Ranoszek-Soliwoda, K., Tomaszewska, E., Socha, E., Krzyczmonik, P., Ignaczak, A., Orlowski, P., Krzyzowska, M., Celichowski, G., & Grobelny, J. (2017). The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. Journal of Nanoparticle Research, 19(8), 273.

    Google Scholar 

  11. Horikoshi, S., Sumi, T., & Serpone, N. (2013). A hybrid microreactor/microwave high-pressure flow system of a novel concept design and its application to the synthesis of silver nanoparticles. Chemical Engineering and Processing: Process Intensification, 73, 59–66.

    Google Scholar 

  12. Oyagi, M. O., Michira, I. N., Guto, P., Baker, P. G. L., Kamau, G., & Iwuoha, I. (2014). Polydisperse low diameter ‘non-toxic’ silver nanoparticles encapsulated by rooibos tea templates. Nano Hybrids, 8, 57–72.

    Google Scholar 

  13. Seabra, A. B., Manosalva, N., De Araujo Lima, B., Pelegrino, M. T., Brocchi, M., Rubilar, O., & Duran, N. (2017). Antibacterial activity of nitric oxide releasing silver nanoparticles. Journal of Physics: Conference Series, 838(1), 012031.

    Google Scholar 

  14. Raj, S., & Trivedi, R. (2018). Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochemical and Biophysical Research Communications, 503(4), 2814–2819.

    Google Scholar 

  15. Seabra, A. B., Haddad, P., & Duran, N. (2013). Biogenic synthesis of nanostructured iron compounds: applications and perspectives. IET Nanobiotechnology, 7(3), 90–99.

    Google Scholar 

  16. Patil, M. P., & Kim, G. D. (2018). Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids and Surfaces B: Biointerfaces, 172, 487–495.

    Google Scholar 

  17. Seabra, A. B., & Durán, N. (2015). Nanotoxicology of metal oxide nanoparticles. Metals, 5(2), 934–975.

    Google Scholar 

  18. Faghri Zonooz, N., & Salouti, M. (2011). Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Scientia Iranica, 18(6), 1631–1635.

    Google Scholar 

  19. Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., & Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters, 62, 4411–4413.

    Google Scholar 

  20. Kumar, C. G., & Mamidyala, S. K. (2011). Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 84(2), 462–466.

    Google Scholar 

  21. Yumei, L., Yamei, L., Qiang, L., & Jie, B. (2017). Rapid biosynthesis of silver nanoparticles based on flocculation and reduction of an exopolysaccharide from arthrobacter sp. B4: Its antimicrobial activity and phytotoxicity. Journal of Nanomaterials, 2017 8 pages.

  22. Santos, M. C., Seabra, A. B., Pelegrino, M. T., & Haddad, P. S. (2016). Synthesis, characterization and cytotoxicity of glutathione- and PEG-glutathione-superparamagnetic iron oxide nanoparticles for nitric oxide delivery. Applied Surface Science, 367, 26–35.

    Google Scholar 

  23. Gallardo, C., Monrás, J. P., Plaza, D. O., Collao, B., Saona, L. A., Durán-Toro, V., Venegas, F. A., Soto, C., Ulloa, G., Vásquez, C. C., Bravo, D., & Pérez-Donoso, J. M. (2014). Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic bacteria. Journal of Biotechnology, 187, 108–115.

    Google Scholar 

  24. Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C. G. (2001). Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology, 19(1), 15–20.

    Google Scholar 

  25. Lengke, M. F., Fleet, M. E., & Southam, G. (2007). Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir, 23(5), 2694–2699.

    Google Scholar 

  26. Chattopadhyay, M. K., Raghu, G., Sharma, Y. V. R. K., Biju, A. R., Rajasekharan, M. V., & Shivaji, S. (2011). Increase in oxidative stress at low temperature in an antarctic bacterium. Current Microbiology, 62(2), 544–546.

    Google Scholar 

  27. Shivaji, S., Madhu, S., & Singh, S. (2011). Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochemistry, 46(9), 1800–1807.

    Google Scholar 

  28. Javani, S., Marín, I., Amils, R., & Abad, J. P. (2015). Four psychrophilic bacteria from Antarctica extracellularly biosynthesize at low temperature highly stable silver nanoparticles with outstanding antimicrobial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 483, 60–69.

    Google Scholar 

  29. Wang, J., Salem, D. R., & Sani, R. K. (2019). Extremophilic exopolysaccharides: a review and new perspectives on engineering strategies and applications. Carbohydrate Polymers, 205, 8–26.

    Google Scholar 

  30. Lamilla, C., Pavez, M., Santos, A., Hermosilla, A., Llanquinao, V., & Barrientos, L. (2017). Bioprospecting for extracellular enzymes from culturable Actinobacteria from the South Shetland Islands, Antarctica. Polar Biology, 40(3), 719–726.

    Google Scholar 

  31. Raju, R., Piggott, A. M., Barrientos Diaz, L. X., Khalil, Z., & Capon, R. J. (2010). Heronapyrroles A-C: Farnesylated 2-Nitropyrroles from an australian marine-derived Streptomyces sp. Organic Letters, 12(22), 5158–5161.

    Google Scholar 

  32. Rietveld, H. M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica, 22(1), 151–152.

    Google Scholar 

  33. Coelho, A. A., Evans, J., Evans, I., Kern, A., & Parsons, S. (2011). The TOPAS symbolic computation system. Powder Diffraction, 26(S1), S22–S25.

    Google Scholar 

  34. Gopinath, V., Priyadarshini, S., Meera Priyadharsshini, N., Pandian, K., & Velusamy, P. (2013). Biogenic synthesis of antibacterial silver chloride nanoparticles using leaf extracts of Cissus quadrangularis Linn. Materials Letters, 91, 224–227.

    Google Scholar 

  35. Kang, Y. O., Lee, T. S., & Park, W. H. (2014). Green synthesis and antimicrobial activity of silver chloride nanoparticles stabilized with chitosan oligomer. Journal of Materials Science: Materials in Medicine, 25(12), 2629–2638.

    Google Scholar 

  36. Anthony, K. J. P., Murugan, M., Jeyaraj, M., Rathinam, N. K., & Sangiliyandi, G. (2014). Synthesis of silver nanoparticles using pine mushroom extract: a potential antimicrobial agent against E. coli and B. subtilis. Journal of Industrial and Engineering Chemistry, 20(4), 2325–2331.

    Google Scholar 

  37. Alishah, H., Pourseyedi, S., Mahani, S. E., & Ebrahimipour, S. Y. (2016). Extract-mediated synthesis of Ag@AgCl nanoparticles using Conium maculatum seeds: characterization, antibacterial activity and cytotoxicity effect against MCF-7 cell line. RSC Advances, 6(77), 73197–73202.

    Google Scholar 

  38. Rolim, W. R., Pelegrino, M. T., de Araújo Lima, B., Ferraz, L. S., Costa, F. N., Bernardes, J. S., Rodigues, T., Brocchi, M., & Seabra, A. B. (2019). Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science, 463, 66–74.

    Google Scholar 

  39. Singh, H., Du, J., Singh, P., & Hoo, T. (2018). Extracellular synthesis of silver nanoparticles by Pseudomonas sp . THG-LS1 . 4 and their antimicrobial application. Journal of Pharmaceutical Analysis, 8(4), 258–264.

    Google Scholar 

  40. Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9(8), 852–858.

    Google Scholar 

  41. Saifuddin, N., Wong, C. W., & Yasumira, A. A. N. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-Journal of Chemistry, 6(1), 61–70.

    Google Scholar 

  42. Altomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., & Rizzi, R. (2015). QUALX2.0: a qualitative phase analysis software using the freely available database POW-COD. Journal of Applied Crystallography, 48(2), 598–603.

    Google Scholar 

  43. Bish, D. L., & Howard, S. A. (1988). Quantitative phase analysis using the Rietveld method. Journal of Applied Crystallography, 21(2), 86–91.

    Google Scholar 

  44. Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65–71.

    Google Scholar 

  45. Arakcheeva, A., Bindi, L., Pattison, P., Meisser, N., Chapuis, G., & Pekov, I. (2010). The incommensurately modulated structures of natural natrite at 120 and 293 K from synchrotron X-ray data. American Mineralogist, 95(4), 574–581.

    Google Scholar 

  46. Urusov, V. S., & Blinov, V. V. (1970). Nature of the imperfection of NaCl-AgCl solid solutions. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 19(2), 231–234.

    Google Scholar 

  47. Cheary, R. W., & Coelho, A. A. (1998). Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a fundamental-parameter profile fitting procedure. Journal of Applied Crystallography, 31(6), 862–868.

    Google Scholar 

  48. Cheary, R. W., & Coelho, A. A. (1998). Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. Journal of Applied Crystallography, 31(6), 851–861.

    Google Scholar 

  49. Cheary, R. W., & Coelho, A. (1992). Fundamental parameters approach to x-ray line-profile fitting. Journal of Applied Crystallography, 25(pt 2), 109–121.

    Google Scholar 

  50. Shao, Y., Wu, C., Wu, T., Yuan, C., Chen, S., Ding, T., Ye, X., & Hu, Y. (2018). Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. International Journal of Biological Macromolecules, 111, 1281–1292.

    Google Scholar 

  51. Prieto, P., Nistor, V., Nouneh, K., Oyama, M., Abd-Lefdil, M., & Díaz, R. (2012). XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth. Applied Surface Science, 258(22), 8807–8813.

    Google Scholar 

  52. Han, L., Wang, P., Zhu, C., Zhai, Y., & Dong, S. (2011). Facile solvothermal synthesis of cube-like Ag@AgCl: A highly efficient visible light photocatalyst. Nanoscale, 3(7), 2931–2935.

    Google Scholar 

  53. El-Rafie, H. M., El-Rafie, M. H., & Zahran, M. K. (2013). Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydrate Polymers, 96(2), 403–410.

    Google Scholar 

  54. Paulkumar, K., Rajeshkumar, S., Gnanajobitha, G., Vanaja, M., Malarkodi, C., & Annadurai, G. (2013). Biosynthesis of silver chloride nanoparticles using Bacillus subtilis MTCC 3053 and assessment of its antifungal activity. ISRN Nanomaterials, 2013, 1–8.

    Google Scholar 

  55. Ajah, H. A., Khalaf, K. J., Hassan, A. S., & Aja, H. A. (2018). Extracellular biosynthesis of silver nanoparticles by Haemophilus influenzae and their antimicrobial activity. Journal of Pharmaceutical Sciences and Research, 10(1), 175–179.

    Google Scholar 

  56. Saravanan, C., Rajesh, R., Kaviarasan, T., Muthukumar, K., Kavitake, D., & Shetty, P. H. (2017). Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnology Reports, 15, 33–40.

    Google Scholar 

  57. Ren, T., Liu, Q., Lu, H., Liu, H., Zhang, X., & Du, J. (2012). Multifunctional polymer vesicles for ultrasensitive magnetic resonance imaging and drug delivery. Journal of Materials Chemistry, 22(24), 12329–12338.

    Google Scholar 

  58. Azizi, M., Ghourchian, H., Yazdian, F., Bagherifam, S., Bekhradnia, S., & Nyström, B. (2017). Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Scientific Reports, 7(1), 1–18.

    Google Scholar 

  59. Honary, S., & Zahir, F. (2013). Effect of zeta potential on the properties of nano - drug delivery systems - a review (part 2). Tropical Journal of Pharmaceutic al Research, 12(2), 265–273.

    Google Scholar 

  60. Vijayabharathi, R., Sathya, A., & Gopalakrishnan, S. (2018). Extracellular biosynthesis of silver nanoparticles using Streptomyces griseoplanus SAI-25 and its antifungal activity against Macrophomina phaseolina, the charcoal rot pathogen of sorghum. Biocatalysis and Agricultural Biotechnology, 14(September 2017), 166–171.

    Google Scholar 

  61. Li, Q., Wang, M., Ge, L., Li, X., Ouyang, J., & Xing, M. (2014). Nanosilver particles in medical applications: synthesis, performance, and toxicity. International Journal of Nanomedicine, 9(1), 2399.

    Google Scholar 

  62. Durán, N., Durán, M., de Jesus, M. B., Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(3), 789–799.

    Google Scholar 

  63. Deljou, A., & Goudarzi, S. (2016). Green extracellular synthesis of the silver nanoparticles using thermophilic Bacillus Sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iranian Journal of Biotechnology, 14(2), 25–32.

    Google Scholar 

  64. Marambio-Jones, C., & Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531–1551.

    Google Scholar 

  65. McShan, D., Ray, P. C., & Yu, H. (2014). Molecular toxicity mechanism of nanosilver. Journal of Food and Drug Analysis, 22(1), 116–127.

    Google Scholar 

  66. Chankaew, C., Somsri, S., Tapala, W., Mahatheeranont, S., Saenjum, C., & Rujiwatra, A. (2018). Kaffir lime leaf extract mediated synthesis, anticancer activities and antibacterial kinetics of Ag and Ag/AgCl nanoparticles. Particuology, 40, 160–168.

    Google Scholar 

  67. Bigdeli, R., Shahnazari, M., Panahnejad, E., Cohan, R. A., Dashbolaghi, A., & Asgary, V. (2019). Cytotoxic and apoptotic properties of silver chloride nanoparticles synthesized using Escherichia coli cell-free supernatant on human breast cancer MCF 7 cell line. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1603–1609.

    Google Scholar 

  68. Somee, L. R., Ghadam, P., Abdi-Ali, A., Fallah, S., & Panahi, G. (2018). Biosynthesised AgCl NPs using Bacillus sp. 1/11 and evaluation of their cytotoxic activity and antibacterial and antibiofilm effects on multi-drug resistant bacteria. IET Nanobiotechnology, 12(6), 764–772.

    Google Scholar 

  69. Zhang, S., Du, C., Wang, Z., Han, X., Zhang, K., & Liu, L. (2013). Reduced cytotoxicity of silver ions to mammalian cells at high concentration due to the formation of silver chloride. Toxicology In Vitro, 27(2), 739–744.

    Google Scholar 

  70. Durán, N., Rolim, W. R., Duran, M., Fávaro, W. J., & Seabra, A. B. (2019). Nanotoxicologia de nanopartículas de prata : Toxicidade em animais e humanos. Quimica Nova, 42(2), 206–213.

    Google Scholar 

  71. Rolim, W. R., Pieretti, J. C., Renó, D. L. S., Lima, B. A., Nascimento, M. H. M., Ambrosio, F. N., Lombello, C. B., Brocchi, M., de Souza, A. C. S., & Seabra, A. B. (2019). Antimicrobial activity and cytotoxicity to tumor cells of nitric oxide donor and silver nanoparticles containing PVA/PEG films for topical applications. ACS Applied Materials & Interfaces, 11, 6589–6604.

    Google Scholar 

  72. Arumai Selvan, D., Mahendiran, D., Senthil Kumar, R., & Kalilur Rahiman, A. (2018). Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: phytochemical, antioxidant and in vitro cytotoxicity studies. Journal of Photochemistry and Photobiology B: Biology, 180(2017), 243–252.

    Google Scholar 

  73. Chung, I.-M., Park, I., Seung-Hyun, K., Thiruvengadam, M., & Rajakumar, G. (2016). Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Research Letters, 11(1), 40.

    Google Scholar 

  74. Kim, S., & Ryu, D. Y. (2013). Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. Journal of Applied Toxicology, 33(2), 78–89.

    Google Scholar 

  75. Shi, T., Sun, X., & He, Q.-Y. (2018). Cytotoxicity of silver nanoparticles against bacteria and tumor cells. Current Protein & Peptide Science, 19(6), 525–536.

    Google Scholar 

  76. Zielinska, E., Zauszkiewicz-Pawlak, A., Wojcik, M., & Inkielewicz-Stepniak, I. (2018). Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget, 9(4), 4675–4697.

    Google Scholar 

  77. Bressan, E., Ferroni, L., Gardin, C., Rigo, C., Stocchero, M., Vindigni, V., et al. (2013). Silver nanoparticles and mitochondrial interaction. International Journal of Dentistry, 2013, 1–8.

    Google Scholar 

Download references

Acknowledgments

We would like to thank the proofreading services for revising the text.

Funding

We have received support from FAPESP-CONICYT (2018/08194-2, 2018/02832-7), CONICYT/FONDAP/15130015, CONICYT-REDES 180003, CNPq (404815/2018-9 and 307664/2015-5), and FONDECYT 1191089. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedea B. Seabra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving humans and animals statement

None.

Informed consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolim, W.R., Lamilla, C., Pieretti, J.C. et al. Antibacterial Activity and Cytotoxicity of Silver Chloride/Silver Nanocomposite Synthesized by a Bacterium Isolated from Antarctic Soil. BioNanoSci. 10, 136–148 (2020). https://doi.org/10.1007/s12668-019-00693-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00693-1

Keywords

Navigation