Skip to main content
Log in

Chemical Mediated Synthesis of Polyaniline/Tungstenoxide (PANI/WO3) Nanocomposites and Their Antibacterial Activity Against Clinical Pathogenic Bacteria

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Polyaniline and tungsten oxide (PANI/WO3)-doped nanocomposites were synthesised by in situ chemical oxidation technique using different weight percentage of WO3 (10%, 30% and 50%), and the polymerization of PANI was carried out by using ammonium persulphate as an oxidising agent. These nanocomposites are characterized by physical methods, viz., Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The X-ray pattern confirmed that the formation of polyaniline and SEM micrographs exhibited agglomeration and showed that WO3 particles have a strong effect on the morphology of composites with average grain sizes of 10–20 nm. FTIR spectra revealed the strong bonding between PANI and WO3 particles. Further, these nanocomposites doped with 10% (P1), 30% (P3) and 50% (P5) of WO3 were tested for their antibacterial activity against pathogenic bacteria, viz., Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa and Salmonella typhimurium. Results revealed that these nanocomposites had shown potential antibacterial activity against all the tested pathogenic strains which was confirmed by clear zone of inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PANI:

Polyaniline

APS:

Ammonium persulphate

WO3 :

Tungsten oxide

SEM:

Scanning electron microscopy

XRD:

X-Ray diffraction

FTIR:

Fourier transmission infrared

References

  1. Mallikarjuna, N. N., Venkataraman, A., & Aminabhavi, T. M. (2004). A study on γ-Fe2O3 loaded poly (methyl methacrylate) nanocomposites. Journal of Applied Polymer Science, 94(6), 2551–2554.

    Google Scholar 

  2. Murugendrappa, M. V., & Prasad, M. A. (2006). Dielectric spectroscopy of polypyrrole–γ–Fe2O3 composites. Materials Research Bulletin, 41(7), 1364–1369.

    Google Scholar 

  3. Raghavendra, S. C., Khasim, S., Revanasiddappa, M., Prasad, M. A., & Kulkarni, A. B. (2003). Synthesis, characterization and low frequency ac conduction of polyaniline/fly ash composites. Bulletin of Materials Science, 26(7), 733–739.

    Google Scholar 

  4. MacDiarmid, A. G., & Epstein, A. J. (1989). Polyanilines: a novel class of conducting polymers. Faraday Discussions of the Chemical Society, 88, 317–332.

    Google Scholar 

  5. Green, A. G., & Woodhead, A. E. (1912). CXVII-aniline-black and allied compounds. Part II. Journal of the Chemical Society, Transactions, 101, 1117–1123.

    Google Scholar 

  6. Molapo, K. M., Ndangili, P. M., Ajayi, R. F., Mbambisa, G., Mailu, S. M., Njomo, N., Masikini, M., Baker, P., & Iwuoha, E. I. (2012). Electronics of conjugated polymers (I): polyaniline. International Journal of Electrochemical Science, 7(12), 11859–11875.

    Google Scholar 

  7. Chiang, C. K., Druy, M. A., Gau, S. C., Heeger, A. J., Louis, E. J., MacDiarmid, A. G., Park, Y. W., & Shirakawa, H. (1978). Synthesis of highly conducting films of derivatives of polyacetylene,(CH) x. Journal of the American Chemical Society, 100(3), 1013–1015.

    Google Scholar 

  8. Jotiram, K. P., Prasad, R. G., Jakka, V. S., Aparna, R. S., & Phani, A. R. (2012). Antibacterial activity of nanostructured polyaniline combined with mupirocin. Nano Biomedicine & Engineering, 4(3), 144–179.

    Google Scholar 

  9. Palaniappan, S., & John, A. (2008). Polyaniline materials by emulsion polymerization pathway. Progress in Polymer Science, 33(7), 732–758.

    Google Scholar 

  10. MacDiarmid, A. G. (2001). “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angewandte Chemie International Edition, 40(14), 2581–2590.

    Google Scholar 

  11. Devendrappa, H., Rao, U. S., & Prasad, M. A. (2006). Study of dc conductivity and battery application of polyethylene oxide/polyaniline and its composites. Journal of Power Sources, 155(2), 368–374.

    Google Scholar 

  12. Sinha, R. (2002). Outlines of polymer technology (Vol. 93). New Delhi: Prentice Hall of India Private Limited.

    Google Scholar 

  13. Lagashetty, A., Vijayanand, H., Basavaraja, S., Bedre, M. D., & Venkataraman, A. (2010). Preparation, characterization, and thermal studies of γ-Fe2O3 and CuO dispersed polycarbonate nanocomposites. Journal of Thermal Analysis and Calorimetry, 99(2), 577–581.

    Google Scholar 

  14. Jiang, L. Y., Leu, C. M., & Wei, K. H. (2002). Layered silicates/fluorinated polyimide nanocomposites for advanced dielectric materials applications. Advanced Materials, 14(6), 426–429.

    Google Scholar 

  15. Caruso, F. (2001). Nanoengineering of particle surfaces. Advanced Materials, 13(1), 11–22.

    Google Scholar 

  16. Leu, C. M., Wu, Z. W., & Wei, K. H. (2002). Synthesis and properties of covalently bonded layered silicates/polyimide (BTDA-ODA) nanocomposites. Chemistry of Materials, 14(7), 3016–3021.

    Google Scholar 

  17. Lagashetty, A., Bhavikatti, A. M., Mahadevi, B., & Kulkarni, S. (2010). Synthesis and characterization of BaTiO3 by thermal decomposition of metal oxalate precursors. International Journal of Eletronics Engineering Research, 2(4), 581.

    Google Scholar 

  18. Parvatikar, N., Jain, S., Kanamadi, C. M., Chougule, B. K., Bhoraskar, S. V., & Prasad, M. A. (2007). Humidity sensing and electrical properties of polyaniline/cobalt oxide composites. Journal of Applied Polymer Science, 103(2), 653–658.

    Google Scholar 

  19. Mallikarjuna, N. N., Manohar, S. K., Kulkarni, P. V., Venkataraman, A., & Aminabhavi, T. M. (2005). Novel high dielectric constant nanocomposites of polyaniline dispersed with γ-Fe2O3 nanoparticles. Journal of Applied Polymer Science, 97(5), 1868–1874.

    Google Scholar 

  20. Parvatikar, N., & Ambika Prasad, M. V. (2006). Frequency-dependent conductivity and dielectric permittivity of polyaniline/CeO2 composites. Journal of Applied Polymer Science, 100(2), 1403–1405.

    Google Scholar 

  21. Patil, S. D., Raghavendra, S. C., Revansiddappa, M., Narsimha, P., & Prasad, M. A. (2007). Synthesis, transport and dielectric properties of polyaniline/Co3O4 composites. Bulletin of Materials Science, 30(2), 89–92.

    Google Scholar 

  22. Bedre, M. D., Basavaraja, S., Salwe, B. D., Shivakumar, V., Arunkumar, L., & Venkataraman, A. (2009). Preparation and characterization of Pani and Pani-Ag nanocomposites via interfacial polymerization. Polymer Composites, 11, 1668–1677.

    Google Scholar 

  23. MacDiarmid, A. G. (2001). Nobel Lecture: “Synthetic metals”: a novel role for organic polymers. Reviews of Modern Physics, 73(3), 701.

    Google Scholar 

  24. Stejskal, J., Kratochvil, P., & Jenkins, A. D. (1996). The formation of polyaniline and the nature of its structures. Polymer, 37(2), 367–369.

    Google Scholar 

  25. Zuo, F., Angelopoulos, M., MacDiarmid, A. G., & Epstein, A. J. (1987). Transport studies of protonated emeraldine polymer: a granular polymeric metal system. Physical Review B, 36(6), 3475.

    Google Scholar 

  26. Patel, R. G., Solanki, G. K., Prajapati, S. M., & Oza, A. T. (2005). Kuhn periodicity in oligoanilines and oligoaniline–iodine complexes. Molecular Crystals and Liquid Crystals, 442(1), 167–180.

    Google Scholar 

  27. Seshadri DT, Bhat NV (2005) Use of polyaniline as an antimicrobial agent in textiles.

  28. Shi, N., Guo, X., Jing, H., Gong, J., Sun, C., & Yang, K. (2006). Antimicrobial effect of the conducting PANI. Journal of Materials Science and Technology, 44(3), 289–290.

    Google Scholar 

  29. Mu, J. L., Fan, W. J., Shan, S. Y., Hu, T. W., Wang, Y. M., & Jia, Q. M. (2013). The effects of natural dopant acids on morphologies and antibacterial activity of polyaniline. Advanced Materials Research, 650, 249–252.

    Google Scholar 

  30. Refat, M. S., Elfalaky, A., & Elesh, E. (2011). Spectroscopic and physical measurements on charge-transfer complexes: interactions between norfloxacin and ciprofloxacin drugs with picric acid and 3, 5-dinitrobenzoic acid acceptors. Journal of Molecular Structure, 990(1-3), 217–226.

    Google Scholar 

  31. Kucekova, Z., Kasparkova, V., Humpolicek, P., Sevcikova, P., & Stejskal, J. (2013). Antibacterial properties of polyaniline-silver films. Chemical Papers, 67(8), 1103–1108.

    Google Scholar 

  32. Collin, C. H., Lyne, P. M., & Grange, J. M. (1985). Microbiological methods (7th ed.). Butter worth.

  33. Bankalgi, S. C., Londonkar, R. L., Madire, U., & Tukappa, N. A. (2016). Biosynthesis, characterization and antibacterial effect of phenolics-coated silver nanoparticles using Cassia javanica L. Journal of Cluster Science, 27(4), 1485–1497.

    Google Scholar 

  34. Inamdar, H. K., Shetty, A. N., Kaveri, S., Sannakki, B., & Ambikaprasad, M. V. (2018). Aloe vera (L.) Burm. F assisted green synthesis and biological applications of Y2O3:Mg2+ nanocomposites. Journal of Cluster Science, 29(4), 805–813.

    Google Scholar 

  35. Alves, T. M., Silva, A. F., Brandão, M., Grandi, T. S., Smânia, E. D., Smânia Júnior, A., & Zani, C. L. (2000). Biological screening of Brazilian medicinal plants. Memórias do Instituto Oswaldo Cruz, 95(3), 367–373.

    Google Scholar 

  36. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, ul Hasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology 60(1):75-80.

  37. Muthusankar, E., Kumar, S. V., Rajagopalan, N., & Ragupathy, D. (2018). Synthesis and characterization of Co-polymer nanocomposite film and its enhanced antimicrobial behaviour. BioNanoScience, 8(4), 1008–1013.

    Google Scholar 

  38. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249.

    Google Scholar 

  39. Park, E. J., & Park, K. (2009). Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicology Letters, 184(1), 18–25.

    Google Scholar 

  40. Dobrucka, R., & Długaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences, 23(4), 517–523.

    Google Scholar 

  41. Parveen, S., Misra, R., & Sahoo, S. K. (2012). Nanomedicine: Nanotechnology, Biology, and Medicine, 8, 147–166.

    Google Scholar 

  42. Salton, M. R. J., Kim, K. S., & Baron, S. (1996). Medical microbiology (fourth ed.). Galveston: University of Texas Medical Branch.

    Google Scholar 

  43. Dhivya, C., Vandarkuzhali, S. A. A., & Radha, N. (2015). Antimicrobial activities of nanostructured polyanilines doped with aromatic nitro compounds. Arabian Journal of Chemistry.

  44. Gizdavic-Nikolaidis, M. R., Bennett, J. R., Swift, S., Easteal, A. J., & Ambrose, M. (2011). Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7(12), 4204–4209.

    Google Scholar 

  45. Savithramma, N., Rao, M. L., Rukmini, K., & Devi, P. S. (2011). Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. International Journal of Chemtech Research, 3(3), 1394–1402.

    Google Scholar 

  46. Raliya, R., Biswas, P., & Tarafdar, J. C. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on Mung bean (Vigna radiata L.). Biotechnology Reports, 5, 22–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Manjunatha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving humans and animals statement

None.

Informed consent

None.

Funding statement

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, B., Shetty, A.N., Kaveri, S. et al. Chemical Mediated Synthesis of Polyaniline/Tungstenoxide (PANI/WO3) Nanocomposites and Their Antibacterial Activity Against Clinical Pathogenic Bacteria. BioNanoSci. 10, 73–80 (2020). https://doi.org/10.1007/s12668-019-00679-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00679-z

Keywords

Navigation