Advertisement

Natural Convection Study with Internal Heat Generation on Heat Transfer and Fluid Flow Within a Differentially Heated Square Cavity Filled with Different Working Fluids and Porous Media

  • Najib Hdhiri
  • Basma SouayehEmail author
  • Huda Alfannakh
  • Brahim Ben Beya
Article
  • 24 Downloads

Abstract

To study the intricate natural convection in square cavity filled with porous medium with an electrically conductive fluid in the presence of internal heat source, a numerical methodology based on the finite volume method and a full multigrid acceleration is utilized in this paper. The Darcy–Brinkman is adopted to model the fluid flow and energy transport equations in order to predict the heat transfer process in the porous medium. Numerical solutions are generated for representative combinations of the controlling Grashof number (103 ≤ Gr ≤ 106), the Prandtl number (0.015 ≤ Pr ≤ 0.054), and the Darcy number (10−5 ≤ Da ≤ 10−2). Typical sets of streamlines, isotherms, and average Nusselt number profiles are presented to analyze the flow patterns set up by the competition between homogenous and porous medium. It is revealed that average Nusselt number values are strongly affected by the increase of Prandtl number and the presence of homogeneous medium overestimates the rate of heat transfer better than the presence of a porous medium. Correlations of heat transfer rates in porous medium cases are established in the current investigation.

Keywords

Natural convection Heat generation Porous medium Metal liquid Numerical simulation 

Nomenclature

Ar

aspect ratio.

Cp

specific heat capacity (Jkg−1 K−1).

H

height of the enclosure (m).

K

thermal conductivity (Wm−1 K−1).

Q

heat generation per unit volume (W m−3).

T

temperature (K).

u

x-velocity component (ms−1).

U

dimensionless X-velocity component, u H/ν.

v

y-velocity component (m s−1).

V

dimensionless Y-velocity component, v H/ν.

x

x-Cartesian coordinate (m).

X

dimensionless X-Cartesian coordinate, x/H.

y

y-Cartesian coordinate (m).

Y

dimensionless Y-Cartesian coordinate, y/H.

ΔT

reference temperature difference (K), TH-TC.

Nu

local Nusselt number.

\( \overline{Nu} \)

average Nusselt number.

\( \overline{N{u}_{corr}} \)

correlated average Nusselt number.

p

pressure (Nm2).

P

dimensionless pressure,pH20ν2.

Pr

Prandtl number, ν/α.

Gr

Grashof number, gβ ΔT H32.

RaE

External Rayleigh number, gβ ΔT H3/να.

RaI

Internal Rayleigh number, gβ Q H5/ναk.

SQ

The dimensionless heat generation/absorption parameter RaI/PrRaE.

TC

cold wall temperature (K).

TH

Hot wall temperature (K).

T

dimensional time (s).

Greek symbols

α

thermal diffusivity(m2 s−1).

β

thermal expansion coefficient (K−1).

Δ

difference value.

ν

kinematic viscosity (m2 s−1).

μ

dynamic viscosity, Ns/m2.

θ

dimensionless temperature, (T-TC)/ΔT.

ρ

fluid density (kg/ m3).

τ

dimensionless time, t ν/H2.

σ

ratio of heat capacities.

K

permeability, m2.

ɛ

Porosity values.

Da

Darcy number, K/H2.

Φ

generic variable (U, V, P, or θ).

Ψ

dimensionless stream-function.

SD

standard deviation.

Notes

Acknowledgments

The authors would like to express their gratitude to King Faisal University, P.O. 380, Al-Ahsa-31982, Saudi Arabia, for providing the administrative and technical support.

Compliance with Ethical Standards

Conflict of Interest

None.

Research Involving Humans and Animals Statement

None.

Informed consent

None.

Funding statement

None.

References

  1. 1.
    Ingham, D., & Pop, I. (2005). Transport phenomena in porous media III. Oxford: Elsevier Science.zbMATHGoogle Scholar
  2. 2.
    Vafai, K. (2005). Handbook of porous media (2nd ed.). New York: Taylor & Francis.zbMATHGoogle Scholar
  3. 3.
    Nield, D. A., & Bejan, A. (2006). Convection in porous media, third ed. New York: Springer.zbMATHGoogle Scholar
  4. 4.
    Brinkman, H. C. (1947). On the permeability of media consisting of closely packed porous particles. Applied Scientific Research, 1, 81–86.Google Scholar
  5. 5.
    Kuznetsov, A. V., & Nield, D. A. (2010). Thermal instability in a porous medium saturated by a nanofluid: Brinkman model. Transport in Porous Media, 81, 409–422.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Nield, D. A., & Kuznetsov, A. V. (2009). Thermal instability in a porous medium layer saturated by a nanofluid. International Journal of Heat and Mass Transfer, 52, 5796–5801.CrossRefzbMATHGoogle Scholar
  7. 7.
    Sankar, M., Bhuvaneswari, M., Sivasankaran, S., & Do, Y. (2011). Buoyancy induced convection in a porous cavity with partially thermally active sidewalls. International Journal of Heat and Mass Transfer, 54, 5173–5182.CrossRefzbMATHGoogle Scholar
  8. 8.
    Alloui, Z., Dufau, L., Beji, H., & Vasseur, P. (2009). Multiple steady states in a porous enclosure partially heated and fully salted from below. International Journal of Thermal Sciences, 48, 521–534.CrossRefGoogle Scholar
  9. 9.
    Seta, T., Takegoshi, E., Kitano, K., Okui, K. (2006). Thermal lattice Boltzmann model for incompressible flows through porous media. Journal of Thermal Science and Technology, pp 90–100.Google Scholar
  10. 10.
    Kang, S., Ha, K.-S., Kim, H. T., Kim, J. H., & Bang, I. C. (2013). An experimental study on natural convection heat transfer of liquid gallium in a rectangular loop. International Journal of Heat and Mass Transfer, 66, 192–199.CrossRefGoogle Scholar
  11. 11.
    Tou, S. K. W., Tso, C. P., & Zhang, X. (1999). 3-D numerical analysis of natural convective liquid cooling of a 3×3 heater array in rectangular enclosures. International Journal of Heat and Mass Transfer, 42, 3231–3244.CrossRefzbMATHGoogle Scholar
  12. 12.
    Astanina, M. S., Sheremet, M. A., Oztop, H. F., & Abu-Hamdeh, N. (2018). MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. International Journal of Mechanical Sciences, 136, 493–502.CrossRefGoogle Scholar
  13. 13.
    Gibanov, N. S., Sheremet, M. A., Oztop, H. F., & Al-Salem, K. (2018). MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. Journal of Magnetism and Magnetic Materials, 452, 193–204.CrossRefGoogle Scholar
  14. 14.
    Toosi, M. H., & Siavashi, M. (2017). Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer. Journal of Molecular Liquids, 238, 553–569.CrossRefGoogle Scholar
  15. 15.
    Chen, S., Gong, W., & Yan, Y. (2018). Conjugate natural convection heat transfer in an open-ended square cavity partially filled with porous media. International Journal of Heat and Mass Transfer, 124, 368–380.CrossRefGoogle Scholar
  16. 16.
    Kefayati, G. H. R. Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity, School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, Australia. DOI: https://doi.org/10.1016/j.powtec.2016.05.032.
  17. 17.
    Chakravarty, A., Datta, P., Ghosh, K., Sen, S., & Mukhopadhyay, A. (2018). Mixed convective heat transfer in an enclosure containing a heatgenerating porous bed under the influence of bottom injection. International Journal of Heat and Mass Transfer, 117, 645–657.Google Scholar
  18. 18.
    Narasimhan, A., & Reddy, B. V. K. (2011). Laminar forced convection in a heat-generating bi-disperse porous medium channel. International Journal of Heat and Mass Transfer, 54, 636–644.CrossRefzbMATHGoogle Scholar
  19. 19.
    Aminossadati, S. M., & Ghasemi, B. (2009). Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. European Journal of Mechanics-B/Fluids, 28, 630–640.CrossRefzbMATHGoogle Scholar
  20. 20.
    Jmai, R., Ben-Beya, B., & Lili, T. (2013). Heat transfer and fluid flow of nanofluid-filled enclosure with two partially heated side walls and different nanoparticles. Superlattices and Microstructures, 53, 130–154.CrossRefGoogle Scholar
  21. 21.
    Berrahil, F., Benissaad, S., Chérifa, A., & Médale, M. (2014). Natural convection with volumetric heat generation and external magnetic field in differentially heated enclosure. Journal of Mechanical Engineering Science, 228, 2711–2727.CrossRefGoogle Scholar
  22. 22.
    Rashad, A. M., Armaghani, T., Chamkha, A. J., & Mansour, M. A. (2018). Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: Effects of a heat sink and source size and location. Chinese Journal of Physics, 56, 193–211.CrossRefGoogle Scholar
  23. 23.
    Sobamowo, M. G., Kamiyo, O. M., & Adeleye, O. A. (2017). Thermal performance analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation. Thermal Science and Engineering Progress, 1, 39–52.CrossRefGoogle Scholar
  24. 24.
    Brown, D. L., Cortez, R., & Minion, M. L. (2001). Accurate projection methods for the incompressible Navier-Stokes equations, Journal of Computational Physics, 168, 464–499.Google Scholar
  25. 25.
    Hayase, T., Humphrey, J.A.C., & Greif, R. (1992). A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures, Journal of Computational Physics, 98, 108–118.Google Scholar
  26. 26.
    Cheikh, N.B., Ben-Beya, B., & Lili, T. (2007). Benchmark solution for time-dependent natural convection flows with an accelerated full-multigrid method, Numer. Heat Transfer B, 52, 131–151.Google Scholar
  27. 27.
    Barrett, R., Berry, M., Chan, T.F. et al. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM.Google Scholar
  28. 28.
    Ben-Beya, B., & Lili, T. (2008). Three-dimensional incompressible flow in a two-sided nonfacing lid-driven cubical cavity, C. R. Mecanique, 336, 863–872.Google Scholar
  29. 29.
    Hdhiri, N., Ben-Beya, B. & Lili, T. (2015). Effects of internal heat generation or absorption on heat transfer and fluid flow within partially heated square enclosure: homogeneous fluids and porous media, Journal of Porous Media, 18 (4): 415–435.Google Scholar
  30. 30.
    Hdhiri, N. & Ben-Beya, B. (2018). Numerical study of laminar mixed convection flow in a lid-driven square cavity filled with porous media: Darcy-Brinkman-Forchheimer and Darcy-Brinkman models, International Journal of Numerical Methods for Heat & Fluid Flow, 28 (4): 857–877.Google Scholar
  31. 31.
    Mahmoudi, A., Mejri, I., Abbassi, M., & Omri, A. (2014). Analysis of the entropy generation in a nanofluid-filled cavity in the presence of magnetic field and uniform heat generation/absorption, Journal of Molecular Liquids, 198, 63–77.Google Scholar
  32. 32.
    Berrahil, F., Benissaad, S., Chérifa, A. & Médale, M. (2014). Natural convection with volumetric heat generation and external magnetic field in differentially heated enclosure, Journal Mechanical Engineering Science. 228, 2711–2727.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Sciences of Tunis, Laboratory of fluid Mechanics, physics departmentUniversity of Tunis El ManarTunisTunisia
  2. 2.College of Science, Physics departmentKing Faisal UniversityAlahsaKingdom of Saudi Arabia

Personalised recommendations