Skip to main content

Advertisement

Log in

Analysis of the Interaction and Proliferative Activity of Adenocarcinoma, Peripheral Blood Mononuclear and Mesenchymal Stromal Cells after Co-Cultivation In Vitro

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The tumor microenvironment is a heterogeneous population of cells actively involved in the process of growth and development of a tumor. Research has demonstrated the interactions between the different populations of cells are critical for the formation of the tumor microenvironment and, if recapitulated experimentally, can be used to produce more effective models for preclinical screening of anticancer drugs. In this study, we demonstrate co-culturing HeLa adenocarcinoma cells, peripheral blood mononuclear cells, and mesenchymal stromal cells results in changes in the proliferative activity of the peripheral blood mononuclear cells and mesenchymal stromal cell populations. This data supports the further development of in vitro co-culture systems utilizing these cell types for pre-clinical screening of anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chulpanova, D. S., Kitaeva, K. V., Tazetdinova, L. G., James, V., Rizvanov, A. A., & Solovyeva, V. V. (2018). Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.00259.

  2. Valkenburg, K. C., de Groot, A. E., & Pienta, K. J. (2018). Targeting the tumour stroma to improve cancer therapy. Nature Reviews. Clinical Oncology, 15(6), 366–381. https://doi.org/10.1038/s41571-018-0007-1.

    Article  Google Scholar 

  3. Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322. https://doi.org/10.1016/j.ccr.2012.02.022.

    Article  Google Scholar 

  4. Rasanen, K., & Herlyn, M. (2012). Paracrine signaling between carcinoma cells and mesenchymal stem cells generates cancer stem cell niche via epithelial-mesenchymal transition. Cancer Discovery, 2(9), 775–777. https://doi.org/10.1158/2159-8290.CD-12-0312.

    Article  Google Scholar 

  5. Lejmi, E., Perriraz, N., Clement, S., Morel, P., Baertschiger, R., Christofilopoulos, P., Meier, R., Bosco, D., Buhler, L. H., & Gonelle-Gispert, C. (2015). Inflammatory chemokines MIP-1delta and MIP-3alpha are involved in the migration of multipotent mesenchymal stromal cells induced by hepatoma cells. Stem Cells and Development, 24(10), 1223–1235. https://doi.org/10.1089/scd.2014.0176.

    Article  Google Scholar 

  6. Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., Chen, J., Hentschel, S., Vecil, G., Dembinski, J., Andreeff, M., & Lang, F. F. (2005). Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Research, 65(8), 3307–3318. https://doi.org/10.1158/0008-5472.CAN-04-1874.

    Article  Google Scholar 

  7. Kim, S. M., Jeong, C. H., Woo, J. S., Ryu, C. H., Lee, J. H., & Jeun, S. S. (2016). In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells: tropism for brain tumors and biodistribution. International Journal of Nanomedicine, 11, 13–23. https://doi.org/10.2147/IJN.S97073.

    Google Scholar 

  8. Nwabo Kamdje, A. H., Kamga, P. T., Simo, R. T., Vecchio, L., Seke Etet, P. F., Muller, J. M., Bassi, G., Lukong, E., Goel, R. K., Amvene, J. M., & Krampera, M. (2017). Mesenchymal stromal cells’ role in tumor microenvironment: involvement of signaling pathways. Cancer Biology & Medicine, 14(2), 129–141. https://doi.org/10.20892/j.issn.2095-3941.2016.0033.

    Article  Google Scholar 

  9. Rodini, C. O., Goncalves da Silva, P. B., Assoni, A. F., Carvalho, V. M., & Okamoto, O. K. (2018). Mesenchymal stem cells enhance tumorigenic properties of human glioblastoma through independent cell-cell communication mechanisms. Oncotarget, 9(37), 24766–24777. https://doi.org/10.18632/oncotarget.25346.

    Article  Google Scholar 

  10. Ramdasi, S., Sarang, S., & Viswanathan, C. (2015). Potential of mesenchymal stem cell based application in cancer. International Journal of Hematology-oncology and Stem Cell Research, 9(2), 95–103.

    Google Scholar 

  11. Rhee, K. J., Lee, J. I., & Eom, Y. W. (2015). Mesenchymal stem cell-mediated effects of tumor support or suppression. International Journal of Molecular Sciences, 16(12), 30015–30033. https://doi.org/10.3390/ijms161226215.

    Article  Google Scholar 

  12. Mamchur, A., Leman, E., Salah, S., Avivi, A., Shams, I., & Manov, I. (2018). Adipose-derived stem cells of blind mole rat Spalax exhibit reduced homing ability: molecular mechanisms and potential role in cancer suppression. Stem Cells, 36(10), 1630–1642. https://doi.org/10.1002/stem.2884.

    Article  Google Scholar 

  13. Gilazieva, Z. E., Tazetdinova, L. G., Arkhipova, S. S., Solovyeva, V. V., & Rizvanov, A. A. (2016). Effect of cisplatin on ultrastructure and viability of adipose-derived mesenchymal stem cells. BioNanoScience, 6(4), 534–539. https://doi.org/10.1007/s12668-016-0283-0.

    Article  Google Scholar 

  14. Galon, J., Angell, H. K., Bedognetti, D., & Marincola, F. M. (2013). The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity, 39(1), 11–26. https://doi.org/10.1016/j.immuni.2013.07.008.

    Article  Google Scholar 

  15. Beckermann, K. E., Dudzinski, S. O., & Rathmell, J. C. (2017). Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine & Growth Factor Reviews, 35, 7–14. https://doi.org/10.1016/j.cytogfr.2017.04.003.

    Article  Google Scholar 

  16. Brand, A., Singer, K., Koehl, G. E., Kolitzus, M., Schoenhammer, G., Thiel, A., Matos, C., Bruss, C., Klobuch, S., Peter, K., Kastenberger, M., Bogdan, C., Schleicher, U., Mackensen, A., Ullrich, E., Fichtner-Feigl, S., Kesselring, R., Mack, M., Ritter, U., Schmid, M., Blank, C., Dettmer, K., Oefner, P. J., Hoffmann, P., Walenta, S., Geissler, E. K., Pouyssegur, J., Villunger, A., Steven, A., Seliger, B., Schreml, S., Haferkamp, S., Kohl, E., Karrer, S., Berneburg, M., Herr, W., Mueller-Klieser, W., Renner, K., & Kreutz, M. (2016). LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metabolism, 24(5), 657–671. https://doi.org/10.1016/j.cmet.2016.08.011.

    Article  Google Scholar 

  17. Roychoudhuri, R., Eil, R. L., & Restifo, N. P. (2015). The interplay of effector and regulatory T cells in cancer. Current Opinion in Immunology, 33, 101–111. https://doi.org/10.1016/j.coi.2015.02.003.

    Article  Google Scholar 

  18. Ngambenjawong, C., Gustafson, H. H., & Pun, S. H. (2017). Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Advanced Drug Delivery Reviews, 114, 206–221. https://doi.org/10.1016/j.addr.2017.04.010.

    Article  Google Scholar 

  19. Van Dyken, S. J., & Locksley, R. M. (2013). Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annual Review of Immunology, 31, 317–343. https://doi.org/10.1146/annurev-immunol-032712-095906.

    Article  Google Scholar 

  20. Timaner, M., Beyar-Katz, O., & Shaked, Y. (2016). Analysis of the stromal cellular components of the solid tumor microenvironment using flow cytometry. Current Protocols in Cell Biology, 70, 19.18.1–19.18.12. https://doi.org/10.1002/0471143030.cb1918s70.

    Article  Google Scholar 

  21. Mingaleeva, R. N., Solovieva, V. V., Blatt, N. L., & Rizvanov, A. A. (2013). Application of cell and tissue cultures for potential anti-cancer/oncology drugs screening in vitro. Cellular Transplantation and Tissue Engineering, 8(2), 20–28.

    Google Scholar 

  22. Santo, V. E., Rebelo, S. P., Estrada, M. F., Alves, P. M., Boghaert, E., & Brito, C. (2017). Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy read-outs. Biotechnology Journal, 12(1). https://doi.org/10.1002/biot.201600505.

  23. Islamov, R. R., Rizvanov, A. A., Mukhamedyarov, M. A., Salafutdinov, I. I., Garanina, E. E., Fedotova, V. Y., Solovyeva, V. V., Mukhamedshina, Y. O., Safiullov, Z. Z., Izmailov, A. A., Guseva, D. S., Zefirov, A. L., Kiyasov, A. P., & Palotas, A. (2015). Symptomatic improvement, increased life-span and sustained cell homing in amyotrophic lateral sclerosis after transplantation of human umbilical cord blood cells genetically modified with adeno-viral vectors expressing a neuro-protective factor and a neural cell adhesion molecule. Current Gene Therapy, 15(3), 266–276.

    Article  Google Scholar 

  24. Kitaeva, K., Prudnikov, T., Gomzikova, M., Tazetdinova, L., & Soloveva, A. R. V. (2017). Analysis of interactions between CD14+monocytes, mesenchymal stem cells and HeLa cells in double co-cultures in vitro. Blood, 130.

  25. Rizvanov, A. A., Yalvac, M. E., Shafigullina, A. K., Salafutdinov, I. I., Blatt, N. L., Sahin, F., Kiyasov, A. P., & Palotas, A. (2010). Interaction and self-organization of human mesenchymal stem cells and neuro-blastoma SH-SY5Y cells under co-culture conditions: a novel system for modeling cancer cell micro-environment. European Journal of Pharmaceutics and Biopharmaceutics, 76(2), 253–259. https://doi.org/10.1016/j.ejpb.2010.05.012.

    Article  Google Scholar 

  26. Corkum, C. P., Ings, D. P., Burgess, C., Karwowska, S., Kroll, W., & Michalak, T. I. (2015). Immune cell subsets and their gene expression profiles from human PBMC isolated by vacutainer cell preparation tube (CPT) and standard density gradient. BMC Immunology, 16, 48. https://doi.org/10.1186/s12865-015-0113-0.

    Article  Google Scholar 

  27. Pages, F., Berger, A., Camus, M., Sanchez-Cabo, F., Costes, A., Molidor, R., Mlecnik, B., Kirilovsky, A., Nilsson, M., Damotte, D., Meatchi, T., Bruneval, P., Cugnenc, P. H., Trajanoski, Z., Fridman, W. H., & Galon, J. (2005). Effector memory T cells, early metastasis, and survival in colorectal cancer. The New England Journal of Medicine, 353(25), 2654–2666. https://doi.org/10.1056/NEJMoa051424.

    Article  Google Scholar 

  28. Azimi, F., Scolyer, R. A., Rumcheva, P., Moncrieff, M., Murali, R., McCarthy, S. W., Saw, R. P., & Thompson, J. F. (2012). Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. Journal of Clinical Oncology, 30(21), 2678–2683. https://doi.org/10.1200/JCO.2011.37.8539.

    Article  Google Scholar 

  29. Mahmoud, S. M., Paish, E. C., Powe, D. G., Macmillan, R. D., Grainge, M. J., Lee, A. H., Ellis, I. O., & Green, A. R. (2011). Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. Journal of Clinical Oncology, 29(15), 1949–1955. https://doi.org/10.1200/JCO.2010.30.5037.

    Article  Google Scholar 

  30. Gajewski, T. F., Schreiber, H., & Fu, Y. X. (2013). Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology, 14(10), 1014–1022. https://doi.org/10.1038/ni.2703.

    Article  Google Scholar 

  31. Platt, J. L., Zhou, X., Lefferts, A. R., & Cascalho, M. (2016). Cell fusion in the war on cancer: a perspective on the inception of malignancy. International Journal of Molecular Sciences, 17(7). https://doi.org/10.3390/ijms17071118.

  32. Bastida-Ruiz, D., Van Hoesen, K., & Cohen, M. (2016). The dark side of cell fusion. International Journal of Molecular Sciences, 17(5). https://doi.org/10.3390/ijms17050638.

  33. Gast, C. E., Silk, A. D., Zarour, L., Riegler, L., Burkhart, J. G., Gustafson, K. T., Parappilly, M. S., Roh-Johnson, M., Goodman, J. R., Olson, B., Schmidt, M., Swain, J. R., Davies, P. S., Shasthri, V., Iizuka, S., Flynn, P., Watson, S., Korkola, J., Courtneidge, S. A., Fischer, J. M., Jaboin, J., Billingsley, K. G., Lopez, C. D., Burchard, J., Gray, J., Coussens, L. M., Sheppard, B. C., & Wong, M. H. (2018). Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Science Advances, 4(9), eaat7828. https://doi.org/10.1126/sciadv.aat7828.

    Article  Google Scholar 

  34. Rappa, G., Mercapide, J., & Lorico, A. (2012). Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity. The American Journal of Pathology, 180(6), 2504–2515. https://doi.org/10.1016/j.ajpath.2012.02.020.

    Article  Google Scholar 

  35. Mosaad, E., Chambers, K., Futrega, K., Clements, J., & Doran, M. R. (2018). Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures. BMC Cancer, 18(1), 592. https://doi.org/10.1186/s12885-018-4473-8.

    Article  Google Scholar 

  36. Meng, F., Meyer, C. M., Joung, D., Vallera, D. A., McAlpine, M. C., & Panoskaltsis-Mortari, A. (2019). 3D bioprinted in vitro metastatic models via reconstruction of tumor microenvironments. Advanced Materials, e1806899. https://doi.org/10.1002/adma.201806899.

  37. Probert, C., Dottorini, T., Speakman, A., Hunt, S., Nafee, T., Fazeli, A., Wood, S., Brown, J. E., & James, V. (2018). Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; a potential mechanism of metastasis. Oncogene. https://doi.org/10.1038/s41388-018-0540-5.

  38. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659. https://doi.org/10.1038/ncb1596.

    Article  Google Scholar 

  39. Zhang, S., Zhang, Y., Qu, J., Che, X., Fan, Y., Hou, K., Guo, T., Deng, G., Song, N., Li, C., Wan, X., Qu, X., & Liu, Y. (2017). Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells. Brazilian Journal of Medical and Biological Research = Revista brasileira de pesquisas medicas e biologicas, 51(1), e6472. https://doi.org/10.1590/1414-431X20176472.

    Google Scholar 

  40. Chulpanova, D. S., Kitaeva, K. V., James, V., Rizvanov, A. A., & Solovyeva, V. V. (2018). Therapeutic prospects of extracellular vesicles in cancer treatment. Frontiers in Immunology, 9, 1534. https://doi.org/10.3389/fimmu.2018.01534.

    Article  Google Scholar 

  41. Caicedo, A., Fritz, V., Brondello, J. M., Ayala, M., Dennemont, I., Abdellaoui, N., de Fraipont, F., Moisan, A., Prouteau, C. A., Boukhaddaoui, H., Jorgensen, C., & Vignais, M. L. (2015). MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Scientific Reports, 5, 9073. https://doi.org/10.1038/srep09073.

    Article  Google Scholar 

  42. Smith, H. A., & Kang, Y. (2013). The metastasis-promoting roles of tumor-associated immune cells. Journal of Molecular Medicine, 91(4), 411–429. https://doi.org/10.1007/s00109-013-1021-5.

    Article  Google Scholar 

  43. Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444. https://doi.org/10.1038/nature07205.

    Article  Google Scholar 

  44. Poggi, A., & Zocchi, M. R. (2018). Immunomodulatory properties of mesenchymal stromal cells: still unresolved “Yin and Yang”. Current Stem Cell Research & Therapy. https://doi.org/10.2174/1574888X14666181205115452.

  45. Siegel, G., Schafer, R., & Dazzi, F. (2009). The immunosuppressive properties of mesenchymal stem cells. Transplantation, 87(9 Suppl), S45–S49. https://doi.org/10.1097/TP.0b013e3181a285b0.

    Article  Google Scholar 

  46. Kidd, S., Spaeth, E., Watson, K., Burks, J., Lu, H., Klopp, A., Andreeff, M., & Marini, F. C. (2012). Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One, 7(2), e30563. https://doi.org/10.1371/journal.pone.0030563.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation grant 18-74-10044. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriya V. Solovyeva.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitaeva, K.V., Prudnikov, T.S., Gomzikova, M.O. et al. Analysis of the Interaction and Proliferative Activity of Adenocarcinoma, Peripheral Blood Mononuclear and Mesenchymal Stromal Cells after Co-Cultivation In Vitro. BioNanoSci. 9, 502–509 (2019). https://doi.org/10.1007/s12668-019-00625-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00625-z

Keywords

Navigation