, Volume 9, Issue 1, pp 53–58 | Cite as

Differential Sensitivity of Various Markers of Platelet Activation with Adenosine Diphosphate

  • Giang Le Minh
  • Alina D. Peshkova
  • Izabella A. Andrianova
  • John W. Weisel
  • Rustem I. LitvinovEmail author


A number of techniques have been available to assess platelet activation, but their relative sensitivity is unknown and their usage is variable and not based on any rational criteria. Here, we compared the ability of several techniques based on morphological and biochemical markers to detect the first signs of ADP-induced platelet activation. Scanning electron microscopy of platelets was performed in parallel with flow cytometry to quantify the surface expression of P-selectin (marked by labeled anti-CD62P antibodies), active αIIbβ3-intergrin (assessed by the binding of labeled fibrinogen), and phosphatidylserine (assessed by the binding of labeled Annexin V). When expressed as a fraction of activated platelets, shape changes were the most sensitive to a low ADP concentration compared to the biochemical markers in the following order of sensitivity: morphological changes>fibrinogen binding capacity>P-selectin expression> phosphatidylserine exposure. These results suggest the greater sensitivity of platelet microscopy and the importance of its combination with flow cytometry used to detect surface expression of the molecular markers of platelet activation.


Platelet activation Scanning electron microscopy Flow cytometry 


Funding Information

The work was supported by the NIH grant UO1HL116330 and HL090774, National Science Foundation grant DMR150566, the Program for Competitive Growth at Kazan Federal University, and the Russian Foundation for Basic Research/Republic of Tatarstan grant 18-415-16004.


  1. 1.
    Wendelboe, A. M., & Raskob, G. E. (2016). Global burden of thrombosis: epidemiologic aspects. Circulation Research, 118(9), 1340–1347. Scholar
  2. 2.
    Peshkova, A. D., Malyasyov, D. V., Bredikhin, R. A., Le Minh, G., Andrianova, I. A., Tutwiler, V., Nagaswami, C., Weisel, J. W., & Litvinov, R. I. (2018). Reduced contraction of blood clots in venous thromboembolism is a potential thrombogenic and embologenic mechanism. TH Open, 2(1), e104–e115. Scholar
  3. 3.
    Tutwiler, V., Peshkova, A. D., Andrianova, I. A., Khasanova, D. R., Weisel, J. W., & Litvinov, R. I. (2016). Contraction of blood clots is impaired in acute ischemic stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(2), 271–279. Scholar
  4. 4.
    Le Minh, G., Peshkova, A. D., Andrianova, I. A., Sibgatullin, T. B., Maksudova, A. N., Weisel, J. W., & Litvinov, R. I. (2018). Impaired contraction of blood clots as a novel prothrombotic mechanism in systemic lupus erythematosus. Clinical Science, 132(2), 243–254. Scholar
  5. 5.
    Jennings, L. K. (2009). Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thrombosis and Haemostasis, 101(2), 248–257. Scholar
  6. 6.
    Daniel, J. L., Dangelmaier, C., Jin, J., Ashby, B., Smith, J. B., & Kunapuli, S. P. (1998). Molecular basis for ADP-induced platelet activation I. evidence for three distinct ADP receptors on human platelets. Journal of Biological Chemistry, 273(4), 2024–2029. Scholar
  7. 7.
    Kamath, S., Blann, A. D., & Lip, G. Y. (2001). Platelet activation: assessment and quantification. European Heart Journal, 22(17), 1561–1571. Scholar
  8. 8.
    Tutwiler, V., Litvinov, R. I., Lozhkin, A. P., Peshkova, A. D., Lebedeva, T., Ataullakhanov, F. I., Spiller, K. L., Cines, D. B., & Weisel, J. W. (2015). Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood. Blood, 127(1), 149–159. Scholar
  9. 9.
    Harrison, P. (2000). Progress in the assessment of platelet function. British Journal of Haematology, 111(3), 733–744. Scholar
  10. 10.
    Fijnheer, R., Frijns, C. J., Korteweg, J., Rommes, H., Peters, J. H., Sixma, J. J., & Nieuwenhuis, H. K. (1997). The origin of P-selectin as a circulating plasma protein. Thrombosis and Haemostasis, 77(6), 1081–1085.CrossRefGoogle Scholar
  11. 11.
    van Velzen, J. F., Laros-van Gorkom, B. A., Pop, G. A., & van Heerde, W. L. (2012). Multicolor flow cytometry for evaluation of platelet surface antigens and activation markers. Thrombosis Research, 130(1), 92–98. Scholar
  12. 12.
    Ramström, S., Rånby, M., & Lindahl, T. (2003). Platelet phosphatidylserine exposure and procoagulant activity in clotting whole blood: different effects of collagen, TRAP and calcium ionophore A23187. Thrombosis and Haemostasis, 89(1), 132–141. Scholar
  13. 13.
    Merten, M., & Thiagarajan, P. (2000). P-selectin expression on platelets determines size and stability of platelet aggregates. Circulation, 102(16), 1931–1936. Scholar
  14. 14.
    Ferroni, P., Speziale, G., Ruvolo, G., Giovannelli, A., Pulcinelli, F. M., Lenti, L., Pignatelli, P., Criniti, A., Tonelli, E., Marino, B., & Gazzaniga, P. P. (1998). Platelet activation and cytokine production during hypothermic cardiopulmonary bypass–a possible correlation? Thrombosis and Haemostasis, 80(1), 58–64. Scholar
  15. 15.
    Ferroni, P., Riondino, S., Vazzana, N., Santoro, N., Guadagni, F., & Davì, G. (2012). Biomarkers of platelet activation in acute coronary syndromes. Thrombosis and Haemostasis, 108(6), 1109–1123. Scholar
  16. 16.
    Michelson, A. D., Barnard, M. R., Hechtman, H. B., MacGregor, H., Connolly, R. J., Loscalzo, J., & Valeri, C. R. (1996). In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. Proceedings of the National Academy of Sciences of the United States of America, 93(21), 11877–11882. Scholar
  17. 17.
    Born, G. V. (1962). Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature, 194, 927–929. Scholar
  18. 18.
    Paul, B. Z., Daniel, J. L., & Kunapuli, S. P. (1999). Platelet shape change is mediated by both calcium-dependent and-independent signaling pathways role of p160 Rho-associated coiled-coil-containing protein kinase in platelet shape change. Journal of Biological Chemistry, 274(40), 28293–28300. Scholar
  19. 19.
    Bearer, E. L. (1995). Cytoskeletal domains in the activated platelet. Cytoskeleton, 30(1), 50–66. Scholar
  20. 20.
    Woronowicz, K., Dilks, J. R., Rozenvayn, N., Dowal, L., Blair, P. S., Peters, C. G., Woronowicz, L., & Flaumenhaft, R. (2010). The platelet actin cytoskeleton associates with SNAREs and participates in α-granule secretion. Biochemistry, 49(21), 4533–4542. Scholar
  21. 21.
    Aslan, J. E. (2017). Platelet shape change. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (pp. 321–336). Cham: Springer. Scholar
  22. 22.
    Baker-Groberg, S. M., Phillips, K. G., & McCarty, O. J. (2013). Quantification of volume, mass, and density of thrombus formation using brightfield and differential interference contrast microscopy. Journal of Biomedical Optics, 18(1), 016014. Scholar
  23. 23.
    Bennett, J. S. (2005). Structure and function of the platelet integrin αIIbβ3. The Journal of Clinical Investigation, 115(12), 3363–3369. Scholar
  24. 24.
    Mehrbod, M., Trisno, S., & Mofrad, M. R. (2013). On the activation of integrin αIIbβ3: outside-in and inside-out pathways. Biophysical Journal, 105(6), 1304–1315. Scholar
  25. 25.
    Harrison, P., & Cramer, E. M. (1993). Platelet α-granules. Blood Reviews, 7(1), 52–62. Scholar
  26. 26.
    Thiagarajan, P., & Tait, J. F. (1990). Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets. Journal of Biological Chemistry, 265(29), 17420–17423.Google Scholar
  27. 27.
    Tonon, G., Luo, X., Greco, N. J., Chen, W., Shi, Y., & Jamieson, G. A. (2002). Weak platelet agonists and U46619 induce apoptosis-like events in platelets, in the absence of phosphatidylserine exposure. Thrombosis Research, 107(6), 345–350. Scholar
  28. 28.
    Beguin, S., Kumar, R., Keularts, I. M., Seligsohn, U., Coller, B. S., & Hemker, H. C. (1999). Fibrin-dependent platelet procoagulant activity requires GPIb receptors and von Willebrand factor. Blood, 93(2), 564–570.Google Scholar
  29. 29.
    Heemskerk, J. W., Bevers, E. M., & Lindhout, T. (2002). Platelet activation and blood coagulation. Thrombosis and Haemostasis, 88(2), 186–193. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Giang Le Minh
    • 1
  • Alina D. Peshkova
    • 1
  • Izabella A. Andrianova
    • 1
  • John W. Weisel
    • 2
  • Rustem I. Litvinov
    • 1
    • 2
    Email author
  1. 1.Institute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussia
  2. 2.Department of Cell and Developmental BiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations