Skip to main content
Log in

Influence of Nonspecific Inhibitor of NO-Synthase L-NAME on Electric Characteristics of Premotor Interneurons of Terrestrial Snails

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

It has been found that the application of nonspecific inhibitor of NO-synthase L-NAME caused the depolarization shift of the membrane potential of premotor interneurons of defensive behavior of terrestrial snails. This effect is opposite to hyperpolarization shift of the membrane potential caused by the action of the nitric oxide donor—sodium nitroprusside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steinert, J. R., Chernova, T., & Forsythe, I. D. (2010). Nitric oxide signaling in brain function, dysfunction, and dementia. The Neuroscientist, 16, 435–452.

    Article  Google Scholar 

  2. Huang, S., Kershbaum, H. H., Engel, E., & Hermann, A. (1997). Biochemical characterization and histochemical localization of nitric oxide synthase in the nervous system of the snail, Helix pomatia. Journal of Neurochemistry, 69, 2516–2528.

    Article  Google Scholar 

  3. Elphick, M. R., Kemenes, G., Staras, K., & O'Shea, M. (1995). Behavioral role for nitric oxide in chemosensory activation of feeding in a mollusc. The Journal of Neuroscience, 15, 7653–7664.

    Article  Google Scholar 

  4. Kazakevich, V. B., Sidorov, A. V., & Gourine, V. N. (2000). Nitric oxide coordinates feeding and defensive behavior of Lymnaea stagnalis. Journal of Neurophysiology, 83, 116–125.

    Article  Google Scholar 

  5. Susswein, A. J., Katzoff, A., Miller, N., & Hurwitz, I. (2004). Nitric oxide and memory. The Neuroscientist, 10(2), 153–162.

    Article  Google Scholar 

  6. Antonov, I., Ha, T., Antonova, I., Moroz, L. L., & Hawkins, R. D. (2007). Role of nitric oxide in classical conditioning of siphon withdrawal in Aplysia. The Journal of Neuroscience, 27(41), 10993–11002. https://doi.org/10.1523/JNEUROSCI.2357-07.2007.

    Article  Google Scholar 

  7. Balaban, P. M., Roshchin, M. V., Timoshenko, A. K., Gainutdinov, K. L., Bogodvid, T. K., Muranova, L. N., Zuzina, A. B., & Korshunova, T. A. (2014). Nitric oxide is necessary for labilization of a consolidated context memory during reconsolidation in terrestrial snails. The European Journal of Neuroscience, 40(6), 2963–2970.

    Article  Google Scholar 

  8. Muranova, L. N., Bogodvid, T. K., Andrianov, V. V., & Gainutdinov, K. L. (2016). Effects of NO donors and inhibitors of NO synthase and guanylate cyclase on the acquisition of a conditioned defense food aversion response in edible snails. Bulletin Experimental Biology and Medicine, 160(4), 414–416.

    Article  Google Scholar 

  9. Dyakonova, T. L., & Reutov, V. P. (1998). Effect of nitrite on the excitability of brain neurons in helix. Ross. Fiziol. Zh. imeni I. M. Sechenova (Russian), 84(11), 1264–1272.

    Google Scholar 

  10. Mothet, J. P., Fossier, P., Tauc, L., & Baux, G. (1996). Opposite actions of nitric oxide on cholinergic synapses: which pathways? Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8721–8726.

    Article  Google Scholar 

  11. Malyshev, A. Y., & Balaban, P. M. (1999). Synaptic facilitation in Helix neurons depends upon postsynaptic calcium and nitric oxide. Neuroscience Letters, 261(1-2), 65–68.

    Article  Google Scholar 

  12. Zsombok, A., Schrofner, S., Hermann, A., & Kerschbaum, H. H. (2000). Nitric oxide increases excitability by depressing a calcium activated potassium current in snail neurons. Neuroscience Letters, 295(3), 85–88.

    Article  Google Scholar 

  13. Patel, B. A., Arundel, M., Parker, K. H., Yeoman, M. S., & O’Hare, D. (2006). Detection of nitric oxide release from single neurons in the pond snail, Lymnaea stagnalis. Analytical Chemistry, 78(22), 7643–7648.

    Article  Google Scholar 

  14. Bogodvid, T. K., Andrianov, V. V., Muranova, L. N., & Gainutdinov, K. L. (2016). Influence of nitric oxide donors on electrical characteristics of the premotor interneurons of terrestrial snails. BioNanoScience, 6(4), 320–321. https://doi.org/10.1007/s12668-016-0221-1.

    Article  Google Scholar 

  15. Gainutdinova, T. K., Andrianov, V. V., Gainutdinov, K. L., Mukhamedshina, D. I., & Tagirova, R. R. (2003). Duration in electrical characteristics of command neurons after defensive conditioning in snail. Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova (Russian), 53, 379–382.

    Google Scholar 

  16. Balaban, P. M. (2002). Cellular mechanisms of behavioral plasticity in terrestrial snail. Neuroscience and Biobehavioral Reviews, 26, 597–630.

    Article  Google Scholar 

  17. Khodorov, B. I. (1974). The problem of excitability: electrical excitability and ionic permeability of the nerve membrane (p. 301). New York, NY: Plenum Press.

    Book  Google Scholar 

  18. Andrianov, V.V., Bogodvid, T. Kh., Deryabina, I.B., Golovchenko, A.N., Muranova, L.N., Tagirova, R.R., Vinarskaya, A.Kh., Gainutdinov, Kh. L. (2015). Modulation of withdrawal reflex conditioning in snails by serotonin. Frontiers in Behavioral Neuroscience, 9(279), 1–12. https://doi.org/10.3389/fnbeh.2015.00279.

  19. Korshunova, T. A., & Balaban, P. M. (2014). Nitric oxide is necessary for long-term facilitation of synaptic responses and for development of context memory in terrestrial snails. Neuroscience, 266, 127–135.

    Article  Google Scholar 

  20. Gainutdinov, K. L., Gainutdinova, T. H., & Chekmarev, L. Y. (1996). Changes of electrical characteristics of command neurons during defensive reflex conditioning in terrestrial snail. Zhurnal vysshei nervnoi deiatelnosti imeni I. P. Pavlova (Russian), 46, 614–616.

    Google Scholar 

  21. Schrofner, S., Zsombok, A., Hermann, A., & Kerschbaum, H. H. (2004). Nitric oxide decreases a calcium-activated potassium current via activation of phosphodiesterase 2 in Helix U-cells. Brain Research, 999(1), 98–105.

    Article  Google Scholar 

  22. Park, A-R., Lee, H.I., Semjid, D., Kim, D.K., Chun, S.W. (2014). Dual effect of exogenous nitric oxide on neuronal excitability in rat substantia gelatinosa neurons. Neural Plasticity 2014 ID 628531, doi: 10.1155/2014/628531.

    Article  Google Scholar 

  23. Gainutdinov, K. L., Andrianov, V. V., & Gainutdinova, T. K. (2011). Changes of the neuronal membrane excitability as cellular mechanisms of learning and memory. Uspekhi Physiologicheskikh Nauk (Russian), 42, 33–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil L. Gainutdinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogodvid, T.K., Andrianov, V.V., Muranova, L.N. et al. Influence of Nonspecific Inhibitor of NO-Synthase L-NAME on Electric Characteristics of Premotor Interneurons of Terrestrial Snails. BioNanoSci. 8, 884–887 (2018). https://doi.org/10.1007/s12668-018-0533-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0533-4

Keywords

Navigation