, Volume 8, Issue 2, pp 624–631 | Cite as

Green Synthesis of Silver Nanoparticles Using Nostoc linckia and its Antimicrobial Activity: a Novel Biological Approach

  • C. Vanlalveni
  • Kalyani Rajkumari
  • Aayushi Biswas
  • Partha Pradip Adhikari
  • R. Lalfakzuala
  • Lalthazuala Rokhum


The biosynthesis of nanoparticles by microorganism is considered a green, non-toxic, and environment-friendly technology. The present study reported for the first time, a rapid and green method for synthesis of silver nanoparticles (AgNPs) using cyanobacteria Nostoc linckia. UV-Vis spectrophotometer, X-ray diffraction (XRD), FT-IR, transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) spectroscopy were used to confirm the formation of silver nanoparticles. The formation and stability of the reduced AgNPs in the colloidal solution were monitored by UV-Vis spectrophotometer analysis. The UV-Vis spectrum revealed a characteristic surface plasmon resonance (SPR) peak at 435 nm, which corresponds to the absorption band of silver nanoparticles. A shift in the absorption bands in FT-IR after the formation of nanoparticles confirmed that the microorganism extract acted not only as reducing agents but also as capping agents to stabilize the formed nanoparticles. X-ray diffraction pattern revealed the crystalline nature of the synthesized nanoparticles. Transmission electron microscope showed spherical shaped nanoparticles. The silver nanoparticles obtained were in the range of 5–60 nm as obtained from TEM. Selected area electron diffraction (SAED) confirmed the formation of metallic Ag. The presence of elemental silver was confirmed by EDX-ray spectroscopy analysis, which showed the peak in silver region at approximately 3 KeV. The AgNPs obtained showed highly potent antibacterial activities toward four different pathogenic bacteria, such as Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus susp. aureus, and two tested fungal strains (Candida albicans and Aspergillus niger).

Graphical abstract


Green synthesis Silver nanoparticles Capping agents Nostoc linckia Antimicrobial activity Biological approach 


Funding Information

This study is funded by SERB, New Delhi (Grant No. SB/FT/CS-103/2013 and SB/EMEQ-076/2014).


  1. 1.
    Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine, 1, 193–212.CrossRefGoogle Scholar
  2. 2.
    Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4, 634–641.CrossRefGoogle Scholar
  3. 3.
    Willner, I., Baron, R., & Willner, B. (2006). Growing metal nanoparticles by enzymes. Advanced Materials, 18, 1109–1120.CrossRefGoogle Scholar
  4. 4.
    Rajan, R., Chandran, K., Harper, S. L., Yun, S. I., & Kalaichelvan, P. T. (2015). Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Industrial Crops and Products, 70, 356–373.CrossRefGoogle Scholar
  5. 5.
    Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496–502.CrossRefGoogle Scholar
  6. 6.
    Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnology Progress, 22, 577–583.CrossRefGoogle Scholar
  7. 7.
    Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31, 346–356.CrossRefGoogle Scholar
  8. 8.
    Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., Szakacs, G., & Pandey, A. (2009). Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry, 44, 939–943.CrossRefGoogle Scholar
  9. 9.
    Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces. B, Biointerfaces, 65, 150–153.CrossRefGoogle Scholar
  10. 10.
    Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., Jamalifar, H., & Nohi, A. A. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochemistry, 42, 919–923.CrossRefGoogle Scholar
  11. 11.
    Zhang, X., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere, 82, 489–494.CrossRefGoogle Scholar
  12. 12.
    Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes—a review. Colloids and Surfaces B: Biointerfaces, 121, 474–483.CrossRefGoogle Scholar
  13. 13.
    Bhattacharya, D., & Gupta, R. K. (2005). Nanotechnology and potential of microorganisms. Critical Reviews in Biotechnology, 25, 199–204.CrossRefGoogle Scholar
  14. 14.
    Priyadarshini, S., Gopinath, V., Priyadharsshini, N. M., Ali, D. M., & Velusamy, P. (2013). Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids and Surfaces B: Biointerfaces, 102, 232–237.CrossRefGoogle Scholar
  15. 15.
    Pantidos, N., & Horsfal, L. E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanoscience and Nanotechnology., 5, 233–242.Google Scholar
  16. 16.
    Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., & Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters, 62, 4411–4413.CrossRefGoogle Scholar
  17. 17.
    Lin, W. S., Lok, C. N., & Che, C. M. (2014). Biosynthesis of silver nanoparticles from silver (I) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chemical Science, 5, 3144–3150.CrossRefGoogle Scholar
  18. 18.
    Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, C. (1971). Purification and properties of uni-cellular blue green algae. Bacteriological Reviews, 35, 171–205.Google Scholar
  19. 19.
    Kaushik, P., & Goyal, P. (2008). In-vitro evaluation of Daturainnoxia (thorn apple) for potential antibacterial activity. Indian Journal of Microbiology., 48, 353–357.CrossRefGoogle Scholar
  20. 20.
    Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339, 2693–2700.CrossRefGoogle Scholar
  21. 21.
    CLSI. (2015). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.Google Scholar
  22. 22.
    Thosar, N., Basak, S., Bahadure, R. N., & Rajurkar, M. (2013). Antimicrobial efficacy of five essential oils against oral pathogens: an in vitro study. European Journal of Dental Education, 7, S71–S77.CrossRefGoogle Scholar
  23. 23.
    Kajaria, D. K., Gangwar, M., Kumar, D., Sharma, A. K., Tilak, R., Nath, G., Tripathi, Y. B., Tripathi, J. S., & Tiwari, S. K. (2012). Evaluation of antimicrobial activity and bronchodialator effect of a polyherbal drug-Shrishadi. Asian Pacific Journal of Tropical Biomedicine., 2, 905–909.CrossRefGoogle Scholar
  24. 24.
    Khan, M., Khan, M., Adil, S. F., Tahir, M. N., Tremel, W., Alkhathlan, H. Z., AlWarthan, A., & Siddiqui, M. R. H. (2013). Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. International Journal of Nanomedicine, 8, 1507–1516.Google Scholar
  25. 25.
    Sanghi, R., & Verma, P. (2009). Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource Technology, 100, 501–504.CrossRefGoogle Scholar
  26. 26.
    Raffin, M., Hussain, F., Bhatti, T. M., Akhter, J. I., Hameed, A., & Hasan, M. M. (2008). Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Materials Science and Technology, 24, 192.Google Scholar
  27. 27.
    Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011). Silver nanoparticles as potential antiviral agents. Molecules, 16, 8894–8918.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BotanyMizoram UniversityAizawlIndia
  2. 2.Department of ChemistryNational Institute of Technology SilcharSilcharIndia
  3. 3.Genoine Research Laboratory Pvt. Ltd.KarimganjIndia

Personalised recommendations