Skip to main content

Biosynthesis and Characterization of Silver Nanoparticles Using Sodium Alginate from the Invasive Macroalga Sargassum muticum


Silver nanoparticles (AgNPs) were synthesized using sodium alginate extracted from the invasive macroalga Sargassum muticum harvested from the Atlantic coast of Morocco. The characterization of silver nanoparticles was determined by various analytical techniques (UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA)). The X-ray diffraction patterns proved the crystal phase of AgNPs. The interaction of the functional groups of sodium alginate in the AgNPs was confirmed by FTIR analysis. They were spherical in shape with average size around 21.95 ± 0.96 nm and they exhibit important thermal stability. The in vitro antimicrobial activity of the synthesized nanoparticles exhibited high antibacterial activity against the tested human pathogenic bacteria Bacillus cereus, Micrococcus luteus, Staphylococcus aureus, and Pseudomonas aeruginosa. These eco-friendliness alginate-mediated silver nanoparticles may serve as antibacterial agents for pharmaceutical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Roco, M. C., & Bainbridge, W. S. (2005). Societal implications of nanoscience and nanotechnology: maximizing human benefit. Journal of Nanoparticle Research, 7, 1–13.

    Article  Google Scholar 

  2. 2.

    Rajathi, F. A. A., Parthiban, C., Kumar, G. V., & Anantharaman, P. (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 99, 166–173.

    Article  Google Scholar 

  3. 3.

    Rao, C. N. R., Kulkarni, G. U., Thomas, P. J., & Edwards, P. P. (2002). Size-dependent chemistry: properties of nanocrystals. Chemistry - A European Journal, 8, 28–35.

    Article  Google Scholar 

  4. 4.

    Zheng, J., Stevenson, M. S., Hikida, R. S., & Patten, P. G. V. (2002). Influence of ph on dendrimer-protected nanoparticles. The Journal of Physical Chemistry. B, 106, 1252–1255.

    Article  Google Scholar 

  5. 5.

    Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. (2017). Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies, 13, 18–23.

    Article  Google Scholar 

  6. 6.

    Kora, A. J., Sashidhar, R. B., & Arunachalama, J. (2010). Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydrate Polymers, 82, 670–679.

    Article  Google Scholar 

  7. 7.

    Velusamy, P., Su, C. H., Kumar, G. V., Adhikary, S., Pandian, K., Gopinath, S. C. B., Chen, Y., & Anbu, P. (2016). Biopolymers regulate silver nanoparticle under microwave irradiation for effective antibacterial and antibiofilm activities. PLoS One, 11, e0157612.

    Article  Google Scholar 

  8. 8.

    Wani, I. A., Ganguly, A., Ahmed, J., & Ahmad, T. (2011). Silver nanoparticles: ultrasonic wave assisted synthesis, optical characterization and surface area studies. Materials Letters, 65, 520–522.

    Article  Google Scholar 

  9. 9.

    Zaheer, Z., & Rafiuddi. (2011). Multi-branched flower-like silver nanoparticles: preparation and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384, 427–431.

    Article  Google Scholar 

  10. 10.

    Zhang, Q., Li, N., Goebl, J., Lu, Z. D., & Yin, Y. D. A. (2011). Systematic study of the synthesis of silver nanoplates: is citrate a magic reagent. Journal of the American Chemical Society, 133, 18931–18939.

    Article  Google Scholar 

  11. 11.

    Conte, M., Miyamura, H., Kobayashi, S., & Chechik, V. (2009). Spin trapping of Au–H intermediate in the alcohol oxidation by supported and unsupported gold catalysts. Journal of the American Chemical Society, 131, 7189–7196.

    Article  Google Scholar 

  12. 12.

    El Badawy, A. M., Scheckel, K. G., Suidan, M., & Tolaymat, T. (2012). The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. The Science of the Total Environment, 429, 325–331.

    Article  Google Scholar 

  13. 13.

    Li, D., Cui, Y., Wang, K., He, Q., Yan, X., & Li, J. (2007). Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers. Advanced Functional Materials, 173, 134–140.

    Google Scholar 

  14. 14.

    Kathiraven, T., Sundaramanickam, A., Shanmugam, N., & Balasubramanian, T. (2015). Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience, 5, 499–504.

    Article  Google Scholar 

  15. 15.

    Annamalai, J., & Nallamuthu, T. (2015). Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Applied Nanoscience, 5, 603–607.

    Article  Google Scholar 

  16. 16.

    Dahl Maddux, B. L. S., & Hutchison, J. E. (2007). Toward greener synthesis. Chemical Reviews, 107, 2228–2269.

    Article  Google Scholar 

  17. 17.

    Wei, D., Sun, W., Qian, W., Ye, Y., & Ma, X. (2009). The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydrate Research, 344, 2375–2382.

    Article  Google Scholar 

  18. 18.

    Varaprasad, K., Raghavendra, G. M., Jayaramudu, T., & Seo, J. (2016). Nano zinc oxide–sodium alginate antibacterial cellulose fibres. Carbohydrate Polymers, 135, 349–355.

    Article  Google Scholar 

  19. 19.

    Li, P., Dai, Y. N., Zhang, J. P., Wang, A. Q., & Wei, Q. (2008). Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. International Journal of Biomedical Sciences, 4, 221–228.

    Google Scholar 

  20. 20.

    Venkatesan, A., Anil, S., Singh, S. K., & Kim, S. K. (2017). Preparations and applications of alginate nanoparticles. In J. Venkatesan, S. Anil, & S. K. Kim (Eds.), Seaweed polysaccharides isolation, Biological and Biomedical Applications (pp. 251–268). Amsterdam: Elsevier.

    Google Scholar 

  21. 21.

    Dhas, S. T., Kumar, G. V., Karthick, V., Govindaraju, K., & Narayana, S. T. (2014). Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 133, 102–106.

    Article  Google Scholar 

  22. 22.

    Otari, S. V., Patil, R. M., Nadaf, N. H., Ghosh, S. J., & Pawar, S. H. (2014). Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environmental Science and Pollution Research, 21, 1503–1513.

    Article  Google Scholar 

  23. 23.

    Yang, J., & Pan, J. (2012). Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Materialia, 60, 4753–4758.

    Article  Google Scholar 

  24. 24.

    Rao, Y. N., Banerjee, D., Datta, A., Das, S. K., Guin, R., & Saha, A. (2010). Gamma irradiation route to synthesis of highly redispersible natural polymer capped silver nanoparticles. Radiation Physics and Chemistry, 79, 1240–1246.

    Article  Google Scholar 

  25. 25.

    Zhao, X., Xia, Y., Li, Q., Ma, X., Quan, F., Geng, C., & Han, Z. (2014). Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 180–188.

    Article  Google Scholar 

  26. 26.

    Sundarrajan, P., Eswaran, P., Marimuthu, A., Baddireddi Subhadra, L., & Kannaiyan, P. (2012). One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles. Bulletin of the Korean Chemical Society, 33, 3218–3224.

    Article  Google Scholar 

  27. 27.

    Tripathi, R., & Mishra, B. (2012). Development and evaluation of sodium alginate–polyacrylamide graft–co-polymer-based stomach targeted hydrogels of famotidine. AAPS PharmSciTech, 13, 1091–1102.

    Article  Google Scholar 

  28. 28.

    Fang, D., Liu, Y., Jiang, S., Nie, J., & Ma, G. (2011). Effect of intermolecular interaction on electrospinning of sodium alginate. Carbohydrate Polymers, 85, 276–279.

    Article  Google Scholar 

  29. 29.

    Kumar, S. A., Abyaneh, M. K., Gosavi, S. W., Kulkarni, S. K., Pasricha, R., Ahmad, A., & Khan, M. I. (2007). Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnology Letters, 29, 439–445.

    Article  Google Scholar 

  30. 30.

    Shankar, S., Wang, L. F., & Rhim, J. W. (2016). Preparations and characterization of alginate/silver composite films: effect of types of silver particles. Carbohydrate Polymers, 146, 208–216.

    Article  Google Scholar 

  31. 31.

    Balavandy, S. K., Shameli, K., & Zainal Abidin, Z. (2015). Rapid and green synthesis of silver nanoparticles via sodium alginate media. International Journal of Electrochemical Science, 10, 486–497.

    Google Scholar 

  32. 32.

    Venkatpurwar, V., & Pokharkar, V. (2011). Green synthesis of silver nanoparticles using marine polysaccharide: study of in-vitro antibacterial activity. Materials Letters, 5, 999–1002.

    Article  Google Scholar 

  33. 33.

    Mathlouthi, M., & Koenig, J. L. (1986). Vibrational spectra of carbohydrates. Advances in Carbohydrate Chemistry and Biochemistry, 44, 7–89.

    Article  Google Scholar 

  34. 34.

    Fenoradosoa, T. A., Ali, G., Delattre, C., Laroche, C., Petit, E., Wadouachi, A., & Michaud, P. (2010). Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioides Grunow. Journal of Applied Phycology, 22, 131–137.

    Article  Google Scholar 

  35. 35.

    Papageorgiou, S. K., Kouvelos, E. P., Favvas, E. P., Sapalidis, A. A., Romanos, G. E., & Katsaros, F. K. (2010). Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydrate Research, 345, 469–473.

    Article  Google Scholar 

  36. 36.

    Gómez-Ordóñez, E., & Rupérez, P. (2011). FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids, 25, 1514–1520.

    Article  Google Scholar 

  37. 37.

    Chandıa, N. P., Matsuhiro, B., & Vásquez, A. E. (2001). Alginic acids in Lessonia trabeculata—characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohydrate Polymers, 46, 81–87.

    Article  Google Scholar 

  38. 38.

    Chandıa, N. P., Matsuhiro, B., Mejías, E., & Moenne, A. (2004). Alginic acids in Lessonia vadosa: partial hydrolysis and elicitor properties of the polymannuronic acid fraction. Journal of Applied Phycology, 16, 127–133.

    Article  Google Scholar 

  39. 39.

    Joye, I. J., & McClements, D. J. (2014). Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Current Opinion in Colloid & Interface Science, 19, 417–427.

    Article  Google Scholar 

  40. 40.

    Yousefzadi, M., Rahimi, Z., & Ghafori, V. (2014). The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J.Agardh. Materials Letters, 137, 1–4.

    Article  Google Scholar 

  41. 41.

    Shanmugam, N., Rajkamal, P., Cholan, S., Kannadasan, N., Sathishkumar, K., Viruthagiri, G., & Sundaramanickam, A. (2014). Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Applied Nanoscience, 4, 881–888.

    Article  Google Scholar 

  42. 42.

    Sangeetha, N., Manikandan, S., Singh, M., & Kumaraguru, A. K. (2012). Biosynthesis and characterization of silver nanoparticles using freshly extracted sodium alginate from the seaweed Padina tetrastromatica of Gulf of Mannar, India. Current Nanoscience, 8, 697–702.

    Article  Google Scholar 

  43. 43.

    Sarwar, A., Katas, H., Samsudin, S. N., & Zin, N. M. (2015). Regioselective sequential modification of chitosan via azide-alkyne click reaction: synthesis, characterization, and antimicrobial activity of chitosan derivatives and nanoparticles. PLoS One, 10, e0123084.

    Article  Google Scholar 

  44. 44.

    Yu, J., Zhang, W., Li, Y., Wang, G., Yang, L., Jin, J., Chen, Q., & Huang, M. (2014). Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomedical Materials, 10, 015001.

    Article  Google Scholar 

  45. 45.

    Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249.

    Article  Google Scholar 

  46. 46.

    Kvıtek, L., Prucek, R., Panacek, A., Novotny, R., Hrbac, J., & Zboril, R. (2005). The influence of complexing agent concentration on particle size in the process of SERS active silver colloid synthesis. Journal of Materials Chemistry, 15, 1099–1105.

    Article  Google Scholar 

  47. 47.

    Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramırez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353.

    Article  Google Scholar 

  48. 48.

    Yang, W., Shen, C., Ji, Q., An, H., Wang, J., Liu, Q., & Zhang, Z. (2009). Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 20, 085102.

    Article  Google Scholar 

  49. 49.

    Chaloupka, K., Malam, Y., & Seifalian, A. M. (2010). Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28, 580–588.

    Article  Google Scholar 

  50. 50.

    Schrofel, A., Kratosova, G., Safarik, I., Safarikova, M., & Raska, I. (2014). Applications of biosynthesized metallic nanoparticles—a review. Acta Biomaterialia, 10, 4023–4042.

    Article  Google Scholar 

  51. 51.

    Sahayaraj, K., Rajesh, S., & Rathi, J. M. (2012). Silver nanoparticles biosynthesis using marine alga Padina pavonica (linn.) and its microbicidal activity. Digest Journal of Nanomaterials and Biostructures, 7, 1557–1567.

    Google Scholar 

Download references


Zahira Belattmania acknowledges her doctoral fellowship from the Ministry of Higher Education and Scientific Research of Morocco.

Author information



Corresponding author

Correspondence to Brahim Sabour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belattmania, Z., Bentiss, F., Jama, C. et al. Biosynthesis and Characterization of Silver Nanoparticles Using Sodium Alginate from the Invasive Macroalga Sargassum muticum. BioNanoSci. 8, 617–623 (2018).

Download citation


  • Silver nanoparticles
  • Green synthesis
  • Sodium alginate
  • Sargassum muticum