Skip to main content

Advertisement

Log in

Review of Green Methods of Iron Nanoparticles Synthesis and Applications

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Green chemistry becomes an eye-catching topic of interest in the past few years because it is a comfortable, secure, inexpensive, and eco-friendly way of synthesis. Iron oxide nanoparticles with different morphologies and sizes have been extensively studied due to their broad applications. Iron nanoparticles (Fe NPs) have drawn interest in site remediation and also in the treatment of organic or inorganic pollutants of water. The present review shows different synthesis methods of zero-valent and iron oxide nanoparticles from different plant extracts including tea extracts (Oolong tea, tea powder, tea waste, and tea polyphenols), from other plant extracts (Amaranthus dubius, Murraya koenigii, Eucalyptus, Syzygium aromaticum, curcuma, Ocimum sanctum, Emblica officinalis, Tridax procumbens, Dodonaea viscosa, Spinacia oleracea, Lawsonia inermis (henna), Gardenia jasminoides, Punica granatum, and Colocasia esculenta), from bio-microorganisms (Acinetobacter spp. bacterium, Aspergillus oryzae, Sargassum muticum), and from magnetite sand. The different potential applications of iron nanoparticles in remediation, in dye removal, and as an antibacterial agent point to the importance of iron nanoparticles in the environmental removal of contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Usepa U. (2007). Nanotechnology White Paper. Prepared for the US Environmental Protection Agency by Members of the Nanotechnology Workgroup, a Group of Epa's Science Policy Council Science Policy Council (pp. 20460). Washington, DC: US Environmental Protection Agency.

  2. Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine, 6, 257–262.

    Google Scholar 

  3. Panigrahi, S., Kundu, S., Ghosh, S. K., Nath, S., & Pal, T. (2004). General method of synthesis for metal nanoparticles. Journal of Nanoparticle Research, 6, 411–414.

    Google Scholar 

  4. T E R I. (2010). Nanotechnology development in India: building capability and governing the technology [TERI Briefing Paper], supported by IDRC, Canada.

  5. Senapati, S., Ahmad, A., Khan, M. I., Sastry, M., & Kumar, R. (2005). Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small, 1, 517–520.

    Google Scholar 

  6. Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 96, 13611–13614.

    Google Scholar 

  7. Rai, M., Yadav, A., & Gade, A. (2008). Current trends in phytosynthesis of metal nanoparticles. Critical Reviews in Biotechnology, 28, 277–284.

    Google Scholar 

  8. Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10, 507–517.

    Google Scholar 

  9. Pankhurst, Q. A., Connolly, J., Jones, S. K., & Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D, 36, 167–181.

    Google Scholar 

  10. Gilchrist, R. K., Medal, R., Shorey, W. D., Hanselman, R. C., Parrot, J. C., & Taylor, C. B. (1957). Selective inductive heating of lymph nodes. Annals of Surgery, 146, 596–606.

    Google Scholar 

  11. Zboril, R., Mashlan, M., & Petridis, D. (2002). Iron(III) oxides from thermal processes—synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chemistry of Materials, 14, 969–982.

    Google Scholar 

  12. Shin, E. J., Miser, D. E., Chan, W. G., & Hajaligol, M. R. (2005). Catalytic cracking of catechols and hydroquinones in the presence of nano-particle iron oxide. Applied Catalysis, 61, 79–89.

    Google Scholar 

  13. Prucek, R., Hermanek, M., & Zbořil, R. (2009). An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation—a competition between homogeneous and heterogeneous catalysis. Applied Catalysis, 366, 325–232.

    Google Scholar 

  14. Rettig, F., & Moos, R. (2010). α-Iron oxide: an intrinsically semiconducting oxide material for direct thermoelectric oxygen sensors. Sensors and Actuators B: Chemical, 145, 685–690.

    Google Scholar 

  15. Cesar, I., Kay, A., Martinez, J. A. G., & Grätzel, M. (2006). Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. Journal of the American Chemical Society, 128, 4582–4583.

    Google Scholar 

  16. Amara, D., Grinblat, J., & Margel, S. (2012). Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. Journal of Materials Chemistry, 22, 2188–2195.

    Google Scholar 

  17. Breen, M. L., Dinsmore, A. D., Pink, R. H., Qadri, S. B., & Ratna, B. R. (2001). Sonochemically produced ZnS-coated polystyrene core−shell particles for use in photonic crystals. Langmuir, 17, 903–907.

    Google Scholar 

  18. Deng, Y., Qi, D., Deng, C., Zhang, X., & Zhao, D. (2008). Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society, 130, 28–29.

    Google Scholar 

  19. Caruso, F., Susha, A. S., Giersig, M., & Möhwald, H. (1999). Magnetic core–shell particles: preparation of magnetite multilayers on polymer latex microspheres. Advanced Materials, 11, 950–953.

    Google Scholar 

  20. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L. V., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108, 2064–2110.

    Google Scholar 

  21. Bulte, J. W., Douglas, T., Witwer, B., Zhang, S. C., Strable, E., Lewis, B. K., Zywicke, H., Miller, B., van Gelderen, P., Moskowitz, B. M., & Duncan, I. D. (2001). Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nature Biotechnology, 19(12), 1141.

    Google Scholar 

  22. Arbab, A. S., Yocum, G. T., Kalish, H., Jordan, E. K., Anderson, S. A., Khakoo, A. Y., Read, E. J., & Frank, J. A. (2004). Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood, 104(4), 1217–1223.

    Google Scholar 

  23. Kalish, H., Arbab, A. S., Miller, B. R., Lewis, B. K., Zywicke, H. A., Bulte, J. W., Bryant, L. H., & Frank, J. A. (2003). Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: relationship between relaxivities, electrostatic forces, and chemical composition. Magnetic Resonance in Medicine, 50(2), 275–282.

    Google Scholar 

  24. Schulze, E., Ferrucci, J. J., Poss, K., Lapointe, L., Bogdanova, A., & Weissleder, R. (1995). Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Investigative Radiology, 30(10), 604–610.

    Google Scholar 

  25. Moore, A., Marecos, E., Bogdanov Jr., A., & Weissleder, R. (2000). Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology, 214(2), 568–574.

    Google Scholar 

  26. Sipe, J. C., Filippi, M., Martino, G., Furlan, R., Rocca, M. A., Rovaris, M., Bergami, A., Zyroff, J., Scotti, G., & Comi, G. (1999). Method for intracellular magnetic labeling of human mononuclear cells using approved iron contrast agents. Magnetic Resonance Imaging, 17(10), 1521–1523.

    Google Scholar 

  27. Modo, M., Hoehn, M., & Bulte, J. W. (2005). Cellular MR imaging. Molecular Imaging, 4(3), 15353500200505145.

    Google Scholar 

  28. Zhao, M., Beauregard, D. A., Loizou, L., Davletov, B., & Brindle, K. M. (2001). Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nature Medicine, 7(11), 1241.

    Google Scholar 

  29. Frankel, A. D., & Pabo, C. O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 55(6), 1189–1193.

    Google Scholar 

  30. Koch, A. M., Reynolds, F., Kircher, M. F., Merkle, H. P., Weissleder, R., & Josephson, L. (2003). Bioconjugate Chemistry, 14, 1115.

    Google Scholar 

  31. Zhao, M., Kircher, M. F., Josephson, L., & Weissleder, R. (2002). Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjugate Chemistry, 13(4), 840–844.

    Google Scholar 

  32. Strable, E., Bulte, J. W., Moskowitz, B., Vivekanandan, K., Allen, M., & Douglas, T. (2001). Synthesis and characterization of soluble iron oxide−dendrimer composites. Chemistry of Materials, 13(6), 2201–2209.

    Google Scholar 

  33. Stella, B., Arpicco, S., Peracchia, M. T., Desmaële, D., Hoebeke, J., Renoir, M., D’Angelo, J., Cattel, L., & Couvreur, P. (2000). Design of folic acid-conjugated nanoparticles for drug targeting. Journal of Pharmaceutical Sciences, 89(11), 1452–1464.

    Google Scholar 

  34. Zhang, Y., Kohler, N., & Zhang, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23(7), 1553–1561.

    Google Scholar 

  35. Perez, J. M., Josephson, L., & Weissleder, R. (2004). Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chembiochem, 5(3), 261–264.

    Google Scholar 

  36. Perez, J. M., O’Loughin, T., Simeone, F. J., Weissleder, R., & Josephson, L. (2002). DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. Journal of the American Chemical Society, 124(12), 2856–2857.

    Google Scholar 

  37. Perez, J. M., Josephson, L., O’Loughlin, T., Högemann, D., & Weissleder, R. (2002). Magnetic relaxation switches capable of sensing molecular interactions. Nature Biotechnology, 20(8), 816.

    Google Scholar 

  38. Gao, Y. (2005). Biofunctionalization of magnetic nanoparticles. Nanotechnologies for the Life Sciences. Weinheim: Wiley-VCH.

  39. Safarik, I., & Safarikova, M. (2004). Magnetic techniques for the isolation and purification of proteins and peptides. BioMagnetic Research and Technology, 2(1), 7.

    Google Scholar 

  40. Bucak, S., Jones, D. A., Laibinis, P. E., & Hatton, T. A. (2003). Protein separations using colloidal magnetic nanoparticles. Biotechnology Progress, 19(2), 477–484.

    Google Scholar 

  41. Alexiou, C., Schmid, R. J., Jurgons, R., Kremer, M., Wanner, G., Bergemann, C., Huenges, E., Nawroth, T., Arnold, W., & Parak, F. G. (2006). Targeting cancer cells: magnetic nanoparticles as drug carriers. European Biophysics Journal, 35(5), 446–450.

    Google Scholar 

  42. Kandori, K., & Ishikawa, T. (2004). Preparation and microstructural studies on hydrothermally prepared hematite. Journal of Colloid and Interface Science, 272(1), 246–248.

    Google Scholar 

  43. Petcharoen, K., & Sirivat. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering B, 177, 421–427.

    Google Scholar 

  44. Valentin, V. M., Svetlana, S. M., Andrew, J. L., Olga, V. S., & Anna, O. D. (2014). Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeumvulgare and Rumexacetosa plants. Langmuir, 30, 5982–5988.

    Google Scholar 

  45. Raveendran, P., Fu, J., & Wallen, S. L. (2003). Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 125, 13940–13941.

    Google Scholar 

  46. Mervat, F. Z., EWael, H. E., & Shabaka, A. A. (2012). Malvaparviflora extract assisted green synthesis of silver nanoparticles. Spectrochimica Acta, Part A, 98, 423–428.

    Google Scholar 

  47. Malik, P. M., Shankar, R., Malik, V., Sharma, N., & Mukherjee, T. K. (2014). Green chemistry based benign routes for nanoparticle synthesis. Journal of Nanoparticles. https://doi.org/10.1155/2014/302429.

  48. Praveen, K. T., Ritesh, C. S., & Santosh, B. (2013). Removal of arsenic(III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor. Industrial and Engineering Chemistry Research, 52, 10052–10058.

    Google Scholar 

  49. Ayman, A. A., Medhat, A. A. G., Mana, F., Mona, B. M., & Abdel-Mohamed, M. S. A. (2013). Phytosynthesis of Au, Ag, and Au–Ag bimetallic nanoparticles using aqueous extract of sago pondweed (Potamogetonpectinatus L). ACS Sustainable Chemistry & Engineering, 1, 1520–1529.

    Google Scholar 

  50. Haung, L., Weng, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 801–804.

    Google Scholar 

  51. Njagi, E. C., Huang, H., Stafford, L., Homer, G., Hugo, M. G., Collins, B. C., et al. (2010). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27, 264–271.

    Google Scholar 

  52. Smuleac, V., Varma, R., Sikdar, S., & Bhattacharyya, D. (2011). Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. Journal of Membrane Science, 379, 131–137.

    Google Scholar 

  53. Wu, Y., Zeng, S., Wang, F., Megharaj, M., Naidu, R., & Chen, Z. (2015). Heterogeneous Fenton-like oxidation of malachite green by iron-based nanoparticles synthesized by tea extract as a catalyst. Separation and Purification Technology, 154, 161–167.

    Google Scholar 

  54. Shahwan, T., Abu Sirriah, S., Nairat, M., Boyaci, E., Eroglu, A. E., Scott, T. B., & Hallam, K. R. (2011). Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 172, 258–266.

    Google Scholar 

  55. Lunge, S., Singh, S., & Sinha, A. (2014). Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. Journal of Magnetism and Magnetic Materials, 356, 21–31.

    Google Scholar 

  56. Nadagouda, M. N., Castle, A. B., Murdock, R. C., Hussain, S. M., & Varma, R. S. (2010). In vitro biocompatibility of nanoscalezerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chemistry, 12, 114–122.

    Google Scholar 

  57. Alagiri, M., & Abdul Hamid, S. B. (2014). Green synthesis of α-Fe2O3 nanoparticles for photocatalytic application. Journal of Materials Science: Materials in Electronics, 25, 3572–3577.

    Google Scholar 

  58. Harshiny, M., Iswarya, C. N., & Matheswaran, M. (2015). Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technology, 286, 744–749.

    Google Scholar 

  59. Yizhong, C., Mei, S., & Harold, C. (2003). Antioxidant activity of betalains from plants of the Amaranthaceae. Journal of Agricultural and Food Chemistry, 51, 2288–2294.

    Google Scholar 

  60. Jannathul, M., & Lalitha, P. (2014). Competence of different methods in the biosynthesis of silver nanoparticles. Journal of Chemical and Pharmaceutical Research, 6, 1089–1093.

    Google Scholar 

  61. Ratul, K. D., Nayanmoni, G., Punuri, J. B., Pragya, S., Chandan, M., & Utpal, B. (2012). The synthesis of gold nanoparticles using Amaranthus spinosus leaf extract and study of their optical properties. Advances in Materials Physics and Chemistry, 2, 275–281.

    Google Scholar 

  62. Kumar, B., Kumari, S., Cumbal, L., Debut, A., & Angulo, Y. (2017). Biofabrication of copper oxide nanoparticles using Andean blackberry (RubusglaucusBenth.) fruit and leaf. Journal of Saudi Chemical Society, 21, S475–S480.

    Google Scholar 

  63. Mohanraj, S., Kodhaiyolii, S., Rengasamy, M., & Pugalenthi, V. (2014). Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum. Applied Biochemistry and Biotechnology, 173, 318–331.

    Google Scholar 

  64. Christensen, L., Vivekanandhan, S., Misra, M., & Mohanty, A. K. (2011). Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): an investigation on the effect of broth concentration in reduction mechanism and particle size. Advances Material Letters, 2, 429–434.

    Google Scholar 

  65. Babu, S. A., & Prabu, H. G. (2011). Synthesis of AgNPs using the extract of Calotropisprocera flower at room temperature. Materials Letters, 65, 1675–1677.

    Google Scholar 

  66. Wang, J., & Wan, W. (2008). Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy, 33, 1215–1220.

    Google Scholar 

  67. Han, H., Cui, M., Wei, L., Yang, H., & Shen, J. (2011). Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresource Technology, 102, 7903–7909.

    Google Scholar 

  68. Prasad, C., Gangadhara, S., & Venkateswarlu, P. (2015). Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Applied Nanoscience, 5, 847–855.

    Google Scholar 

  69. Senthil, M., & Ramesh, C. (2012). Biogenic synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Digest Journal of Nanomaterials and Biostructures, 7, 1655–1660.

    Google Scholar 

  70. Venkatesh, S., Reddy, Y. S. R., Ramesh, M., Swamy, M. M., Mahadevan, N., & Suresh, B. (2008). Pharmacognostical studies on Dodonaea viscosa. African Journal of Pharmacy and Pharmacology, 2, 083–088.

    Google Scholar 

  71. Kiruba Daniel, S. C. G., Vinothini, G., Subramanian, N., Nehru, K., & Sivakumar, M. M. (2013). Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. Journal of Nanoparticle Research, 15, 1–10.

    Google Scholar 

  72. Eftekhari, K., Pasha, K. M., Tarigopula, S. P., Sura, M., & Daddam, J. R. (2014). Biosynthesis and characterization of silver and iron nanoparticles from Spinacia oleracea and their antimicrobial studies. International Journal of Plant Animal and Environmental Sciences, 5, 166.

    Google Scholar 

  73. Naseem, T, & Farrukh, M. A. (2015). Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. Journal of Chemistry, 1–7. https://doi.org/10.1155/2015/912342.

  74. Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., et al. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6, 35–44.

    Google Scholar 

  75. Kumar, R., Singh, N., & Pandey, N. (2015). Potential of green synthesized zero-valent iron nanoparticles for remediation of lead-contaminated water. Science and Technology, 12, 3943–3950.

    Google Scholar 

  76. Nadagouda, M. N., & Varma, R. S. C. (2007). A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Crystal Growth & Design, 7, 2582–2587.

    Google Scholar 

  77. Sun, K., Qiu, J., Liu, J., & Miao, Y. (2009). Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. Journal of Materials Science, 44, 754–758.

    Google Scholar 

  78. Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19, 8671–8677.

    Google Scholar 

  79. Liu, Q., Bei, Y., & Zhou, F. (2009). Removal of lead(II) from aqueous solution with amino-functionalized nanoscale zero-valent iron. Central European Journal of Chemistry, 7, 79–82.

    Google Scholar 

  80. Zhang, X., Lin, S., Lu, X. Q., & Chen, Z. (2010). Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chemical Engineering Journal, 163, 243–248.

    Google Scholar 

  81. Li, X., Elliott, D. W., & Zhang, W. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31, 111–122.

    Google Scholar 

  82. O’Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.

    Google Scholar 

  83. Venkateswarlu, S., Natesh Kumar, B., Prathima, B., SubbaRao, Y., & Vijaya Jyothi, N. V. (2014) A novel green synthesis of Fe3O4 magnetic nanorodsusing Punica granatum rind extract and its application for removal of Pb(II) from aqueous environment. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2014.09.006.

  84. Jang, S. H., Min, B. G., Jeong, Y. G., Lyoo, W. S., & Lee, S. C. (2008). Removal of lead ions in aqueous solution by hydroxyapatite polyurethane composite foams. Journal of Hazardous Materials, 152, 1285–1292.

    Google Scholar 

  85. Wu, S. C., Peng, X. L., Cheng, K. C., Liu, S. L., & Wong, M. H. (2009). Adsorption kinetics of Pb and Cd by two plant growth promoting rhizobacteria. Bioresource Technology, 100, 4559–4563.

    Google Scholar 

  86. Ni, J., Xiong, L., Chen, C., & Chen, Q. (2011). Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method. Journal of Hazardous Materials, 189, 741–748.

    Google Scholar 

  87. Shah, F., Kazi, T. G., Afridi, H. I., Khan, S., Kolachi, N. F., Arain, M. B., & Baig, J. A. (2011). The influence of environmental exposure on lead concentrations in scalp hair of children in Pakistan. Ecotoxicology and Environmental Safety, 74, 727–732.

    Google Scholar 

  88. Madadrang, C. J., Kim, H. Y., Gao, G., Wang, N., Zhu, J., Feng, H., et al. (2012). Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Applied Materials & Interfaces, 4, 1186–1193.

    Google Scholar 

  89. Stafej, A., & Pyrzynska, K. (2007). Adsorption of heavy metal ions with carbon nanotubes. Separation and Purification Technology, 58, 49–52.

    Google Scholar 

  90. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides. Journal of Hazardous Materials, 211–212, 317–331.

    Google Scholar 

  91. Hajdu, I., Bodnar, M., Csikos, Z., Wei, S., Daroczi, L., Kovacs, B., et al. (2012). Combined nano-membrane technology for removal of lead ions. Journal of Membrane Science, 409, 44–53.

    Google Scholar 

  92. Suc, N. V., Ho, T. Y., & Ly. (2013). Lead (II) removal from aqueous solution by chitosan flake modified with citric acid via crosslinking with glutaraldehyde. Journal of Chemical Technology and Biotechnology, 88, 1641–1649.

    Google Scholar 

  93. Barakat, M. A., & Schmidt, E. (2010). Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination, 256, 90–93.

    Google Scholar 

  94. Uluozlu, O. D., Sari, A., Tuzen, M., & Soylak, M. (2008). Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelinatiliaceae) biomass. Bioresource Technology, 99, 2972–2980.

    Google Scholar 

  95. Çam, M., & Hışıl, Y. (2010). Pressurised water extraction of polyphenols from pomegranate peels. Food Chemistry, 123, 878–885.

    Google Scholar 

  96. Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of the Total Environment, 466-467, 210–213.

    Google Scholar 

  97. Eneji, A. E., Islam, R., An, P., & Amalu, U. C. (2013). Nitrate retention and physiological adjustment of maize to soil amendment with superabsorbent polymers. Journal of Cleaner Production, 52, 474–480.

    Google Scholar 

  98. Wang, T., Lin, J., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. Journal of Cleaner Production, 83, 413–419.

    Google Scholar 

  99. Thakur, S., & Karak, N. (2012). Green reduction of graphene oxide by aqueous phytoextracts. Carbon, 50, 5331–5339.

    Google Scholar 

  100. Pattanayak, M., Mohapatra, D., & Nayak, P. L. (2013). Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Syzygium aromaticum (clove). Middle-East Journal of Scientific Research, 18, 623–626.

    Google Scholar 

  101. Balamurughan, M. G., Mohanraj, S., Kodhaiyolii, S., & Pugalenthi, V. (2014). National Conference on Green Engineering and Technologies for Sustainable Future-2014 Ocimum sanctum leaf extract mediated green synthesis of iron oxide nanoparticles: spectroscopic and microscopic studies. National Conference on Green Engineering and Tec 4:201–204.

  102. Lengke, M. F., Fleet, M. E., & Southam, G. (2007). Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir, 23, 2694–2699.

    Google Scholar 

  103. Husseiny, M., El-Aziz, M. A., Badr, Y., & Mahmoud, M. (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 67, 1003–1006.

    Google Scholar 

  104. Xie, J., Lee, J. Y., Wang, D. I., & Ting, Y. P. (2007). Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small, 3, 672–682.

    Google Scholar 

  105. Chen, J., Lin, Z., & Ma, X. (2003). Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Letters in Applied Microbiology, 37, 105–108.

    Google Scholar 

  106. Bhainsa, K. C., & Souza, S. D. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids and Surfaces, B: Biointerfaces, 47, 160–164.

    Google Scholar 

  107. Mukherjee, P., Roy, M., Mandal, B., Day, G., Ghatak, J., Tyagi, A., et al. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 19, 75103–75110.

    Google Scholar 

  108. Mahdavi, M., Namvar, F., Bin Ahmed, M., & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18, 5954–5964.

    Google Scholar 

  109. Tarafdar, J. C., & Raliya, R. (2013). Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. Journal of Nanoparticles. https://doi.org/10.1155/2013/141274.

  110. Bharde, A., Wani, A., Shouche, Y., Pa, J., Prasad, B. L. V., & Sastry, M. (2005). Bacterial aerobic synthesis of nanocrystalline magnetite. Journal of the American Chemical Society, 127, 9326–9327.

    Google Scholar 

  111. Shenton, W., Douglas, T., Young, M., Stubbs, G., & Mann, S. (1999). Inorganic organic nanotube composites from template mineralization of tobacco mosaic virus. Advanced Materials, 11, 253–256.

    Google Scholar 

  112. Periyathambi, P., Vedakumari, W. S., Bojja, S., Kumar, S. B., & Sastry, T. P. (2014). Green biosynthesis and characterization of fibrin functionalized iron oxide nanoparticles with MRI sensitivity and increased cellular internalization. Materials Chemistry and Physics, 148, 1212–1220.

    Google Scholar 

  113. Widanarto, W., Sahar, M. R., Ghoshal, S. K., Arifin, R., Rohani, M. S., & Hamzah, K. (2013). Effect of natural Fe3O4 nanoparticles on structural and optical properties of Er 3+ doped tellurite glass. Journal of Magnetism and Magnetic Materials, 326, 123–128.

    Google Scholar 

Download references

Funding

This work was supported by the Biophysical Scientific Society under the supervision of Biophysics Department, Faculty of Science, Cairo University.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched the existing literatures, wrote the manuscript, designed the manuscript, developed the concept, and read and approved the final manuscript.

Corresponding author

Correspondence to Heba Mohamed Fahmy.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahmy, H.M., Mohamed, F.M., Marzouq, M.H. et al. Review of Green Methods of Iron Nanoparticles Synthesis and Applications. BioNanoSci. 8, 491–503 (2018). https://doi.org/10.1007/s12668-018-0516-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0516-5

Keywords

Navigation