Advertisement

BioNanoScience

, Volume 8, Issue 2, pp 537–543 | Cite as

Positively Charged Gold Nanoparticles for Hydrogen Peroxide Detection

  • Mohammad Mansoob KhanEmail author
  • Moo Hwan Cho
Article

Abstract

This paper reports the synthesis of positively charged gold nanoparticles [(+)AuNPs] for the colorimetric detection of hydrogen peroxide (H2O2). (+)AuNPs were synthesized using an electrochemically active biofilm in an aqueous solution, which is a novel, simple, and green approach. The as-synthesized (+)AuNPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). UV-Vis spectroscopy confirmed the synthesis of AuNPs and DLS showed that the as-synthesized AuNPs had a charge of +32.72 mV. XRD confirmed the formation of AuNPs as well as the purity, crystallinity, and fcc structure. TEM and HRTEM showed that (+)AuNPs were 15–21 nm in size and spherical in shape. The as-synthesized (+)AuNPs were used for the colorimetric detection of H2O2 using 3,3,5,5-tetramethylbenzidine dihydrochoride. This study provides a simple, fast, and sensitive colorimetric method for the detection of H2O2 in the linear range from 1.0 × 10−3 to 2.5 × 10−3 M. The (+)AuNPs possessed extraordinary intrinsic peroxidase-like activity (peroxidase mimic) compared to citrate-capped negatively charged AuNPs. This approach to the colorimetric detection of H2O2 is novel and simple because it uses positively charged gold nanoparticles, which may provide new areas for further research.

Keywords

Positively charged gold nanoparticles (+)AuNPs Gold nanoparticles Electrochemically active biofilms Colorimetric method Hydrogen peroxide detection TMB 

Notes

Acknowledgements

M. M. Khan is thankful to the Universiti Brunei Darussalam, Brunei Darussalam, for providing support to complete this article.

Funding Information

This study was supported by the 2017 Yeungnam University Research Grant.

References

  1. 1.
    Faraday, M. (1857). The Bakerian lecture: experimental relations of gold (and other metals) to light. Philosophical Transactions. Royal Society of London, 147, 145–181.CrossRefGoogle Scholar
  2. 2.
    Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36, 153–166.CrossRefGoogle Scholar
  3. 3.
    Prasad, B. L. V., Sorensen, C. M., & Klabunde, K. J. (2008). Gold nanoparticle superlattices. Chemical Society Reviews, 37, 1871–1883.CrossRefGoogle Scholar
  4. 4.
    Burda, C., Chen, X., Narayanan, R., & El-Sayed, M. A. (2005). Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 105, 1025–1102.CrossRefGoogle Scholar
  5. 5.
    Katz, E., & Willner, I. (2004). Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angewandte Chemie, International Edition, 43, 6042–6108.CrossRefGoogle Scholar
  6. 6.
    Pissuwan, D., Valenzuela, S. M., & Cortie, M. B. (2006). Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotech., 24, 62–67.CrossRefGoogle Scholar
  7. 7.
    Kogan, M. J., Bastus, N. G., Amigo, R., Grillo-Bosch, D., Araya, E., Turiel, A., Labarta, A., Giralt, E., & Puntes, V. F. (2006). Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Letters, 6, 110–115.CrossRefGoogle Scholar
  8. 8.
    Bond, G. C., Sermon, P. A., Webb, G., Buchanan, D. A., & Wells, P. B. J. (1973). Hydrogenation over supported gold catalysts. Chem. Soc. Chem. Commun., 444–445.Google Scholar
  9. 9.
    Haruta, M. (2005). Catalysis: gold rush. Nature, 437, 1098–1099.CrossRefGoogle Scholar
  10. 10.
    Hutchings, G. J. (2005). Catalysis by gold. Catalysis Today, 100, 55–61.CrossRefGoogle Scholar
  11. 11.
    Jain, P. K., Lee, K. S., Sayed, I. H. E., & Sayed, M. A. E. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry. B, 110, 7238–7248.CrossRefGoogle Scholar
  12. 12.
    Corma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37, 2096–2126.CrossRefGoogle Scholar
  13. 13.
    Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104, 293–346.CrossRefGoogle Scholar
  14. 14.
    Corma, A., Leyva-Perez, A., & Sabater, M. J. (2011). Gold-catalyzed carbon-heteroatom bond-forming reactions. Chemical Reviews, 111, 1657–1712.CrossRefGoogle Scholar
  15. 15.
    Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold catalysis. Angewandte Chemie, International Edition, 45, 7896–7936.CrossRefGoogle Scholar
  16. 16.
    Xia, Y., Li, W., Cobley, C. M., Chen, J., Xia, X., Zhang, Q., Yang, M., Cho, E. C., & Brown, P. K. (2011). Gold nanocages: from synthesis to theranostic applications. Accounts of Chemical Research, 44, 914–924.CrossRefGoogle Scholar
  17. 17.
    Huang, X., Jain, P. K., El-Sayed, I. H., & El Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicines, 5, 681–693.CrossRefGoogle Scholar
  18. 18.
    Fleischer, M., Bargioni, A. W., Altoe, M. V. P., Schwartzberg, A. M., Schuck, P. J., Cabrini, S., & Kern, D. P. (2011). Gold nanocone near-field scanning optical microscopy probes. ACS Nano, 5, 2570–2579.CrossRefGoogle Scholar
  19. 19.
    Mohamed, A. A. (2011). Gold is going forensic. Gold Bulletin, 44, 71–77.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jv, Y., Li, B., & Cao, R. (2010). Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chemical Communications, 46, 8017–8019.CrossRefGoogle Scholar
  21. 21.
    Niidome, T., Nakashima, K., Takahashi, H., & Niidome, Y. (2004). Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chemical Communications, 1978–1979.Google Scholar
  22. 22.
    Han, T. H., Khan, M. M., Lee, J., & Cho, M. H. (2014). Optimization of positively charged gold nanoparticles synthesized using a stainless-steel mesh and its application for colorimetric hydrogen peroxide detection. Journal of Industrial and Engineering Chemistry, 20, 2003–2009.CrossRefGoogle Scholar
  23. 23.
    Khan, M. M., Kalathil, S., Han, T. H., Lee, J., & Cho, M. H. (2013). Positively charged gold nanoparticles synthesized by electrochemically active biofilm—a biogenic approach. Journal of Nanoscience and Nanotechnology, 13, 6079–6085.CrossRefGoogle Scholar
  24. 24.
    Khan, M. M., Kalathil, S., Lee, J., & Cho, M. H. (2012). Synthesis of cysteine capped silver nanoparticles by electrochemically active biofilm and their antibacterial activities. Bulletin of the Korean Chemical Society, 33, 2592–2596.CrossRefGoogle Scholar
  25. 25.
    Khan, M. M., Ansari, S. A., Lee, J. H., Lee, J., & Cho, M. H. (2014). Mixed culture electrochemically active biofilms and their microscopic and spectroelectrochemical studies. ACS Sustainable Chemistry & Engineering, 2, 423–432.CrossRefGoogle Scholar
  26. 26.
    Han, T. H., Khan, M. M., Kalathil, S., Lee, J., & Cho, M. H. (2013). Simultaneous enhancement of methylene blue degradation and power generation in a microbial fuel cell by gold nanoparticles. Industrial and Engineering Chemistry Research, 52, 8174–8181.CrossRefGoogle Scholar
  27. 27.
    Zhu, T., Vasilev, K., Kreiter, M., Mittler, S., & Knoll, W. (2003). Surface modification of citrate-reduced colloidal gold nanoparticles with 2-mercaptosuccinic acid. Langmuir, 19, 9518–9525.CrossRefGoogle Scholar
  28. 28.
    Liu, X., Atwater, M., Wang, J., & Huo, Q. (2007). Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces, 58, 3–7.CrossRefGoogle Scholar
  29. 29.
    Marichev, V. A. (2008). Kinetics of chloride ion adsorption on stainless alloys by in situ contact electric resistance technique. Electrochimica Acta, 53, 6304–6316.CrossRefGoogle Scholar
  30. 30.
    McCafferty, E. (2010). Introduction to Corrosion Science. New York: Springer.CrossRefGoogle Scholar
  31. 31.
    Das, S. K., Das, A. R., & Guha, A. K. (2009). Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir, 25, 8192–8199.CrossRefGoogle Scholar
  32. 32.
    Carregal-Romero, S., Pérez-Juste, J., Hervés, P., Liz-Marzán, L. M., & Mulvaney, P. (2010). Colloidal gold-catalyzed reduction of ferrocyanate (III) by borohydride ions: a model system for redox catalysis. Langmuir, 26, 1271–1277.CrossRefGoogle Scholar
  33. 33.
    Mie, G. (1908). Mie theory. Ann. Phys., 25, 377–445.CrossRefGoogle Scholar
  34. 34.
    Horvath, H. (2009). Gustav Mie and the scattering and absorption of light by particles: historic developments and basics. Journal of Quantitative Spectroscopy & Radiative Transfer, 110, 787–799.CrossRefGoogle Scholar
  35. 35.
    Khan, M. M., Lee, J. H., Lee, J., & Cho, M. H. (2013). Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles. International Journal of Hydrogen Energy, 38, 5243–5250.CrossRefGoogle Scholar
  36. 36.
    B. D. Cullity, S. R. Stock, Elements of X-ray diffraction, 3rd Ed. Prentice Hall, 2001.Google Scholar
  37. 37.
    Liu, Z., Zhao, B., Shi, Y., Guo, C., Yang, H., & Li, Z. (2010). Novel nonenzymatic hydrogen peroxide sensor based on iron oxide–silver hybrid sub microspheres. Talanta, 81, 1650–1654.CrossRefGoogle Scholar
  38. 38.
    Palanisamy, S., Chen, S. M., & Sarawathi, R. (2012). A novel nonenzymatic hydrogen peroxide sensor based on reduced grapheme oxide/ZnO composite modified electrode. Sensors and Actuators, B: Chemical, 166–167, 372–377.CrossRefGoogle Scholar
  39. 39.
    Khan, M. M., Ansari, S. A., Lee, J., & Cho, M. H. (2013). Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor. Materials Science and Engineering C, 33, 4692–4699.CrossRefGoogle Scholar
  40. 40.
    Bai, H. P., Lu, X. X., Yang, G. M., & Yang, Y. H. (2008). Hydrogen peroxide biosensor based on electrodeposition of zinc oxide nanoflowers onto carbon nanotubes film electrode. Chinese Chemical Letters, 19, 314–318.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Sciences, Faculty of ScienceUniversiti Brunei DarussalamGadongBrunei Darussalam
  2. 2.School of Chemical EngineeringYeungnam UniversityGyeongsan-siSouth Korea

Personalised recommendations