, Volume 8, Issue 1, pp 344–366 | Cite as

Preventing Common Hereditary Disorders through Time-Separated Twinning

  • Alexander Churbanov
  • Levon Abrahamyan


Biomedical advances have led to a relaxation of natural selection in the human population of developed countries. In the absence of strong purifying selection, spontaneous and frequently deleterious mutations tend to accumulate in the human genome and gradually increase the genetic load; that is, the frequency of potentially lethal genes in the gene pool. Gradual increase in incidence of many complex disorders suggests deleterious impact of the genetic load on human well-being. Recent advances in in vitro fertilization (IVF) combined with artificial twinning and transgenerational embryo cryoconservation offer the possibility of preventing significant accumulation of genetic load and reducing the incidence of hereditary disorders. Many complex diseases such as type 1 and 2 diabetes, autism, bipolar disorder, allergies, Alzheimer’s disease, and some cancers show significantly higher concordance in monozygotic (MZ) twins than in fraternal twins (dizygotic, DZ) or parent-child pairs, suggesting their etiology is strongly influenced by genetics. Preventing these diseases based on genetic data alone is frequently impossible due to the complex interplay between genetic and environmental factors. We hypothesize that the incidence of complex diseases could be significantly reduced in the future through a strategy based on time-separated twinning. This strategy involves the collection and fertilization of human oocytes followed by several rounds of artificial twinning. If preimplantation genetic screening (PGS) reports no aneuploidy or known Mendelian disorders, one of the MZ siblings would be implanted and the remaining embryos cryoconserved. Once the good health of the adult MZ sibling(s) is established, subsequent parenthood with the cryoconserved co-twins could substantially lower the incidence of hereditary disorders with complex etiology and virtually eradicate simple Mendelian disorders. The proposed method of artificial twinning has the potential to alleviate suffering and reduce the negative social impact induced by dysgenic effects associated with known and unknown genetic factors. Time-separated twinning has the capacity to prevent further accumulation of the genetic load and to provide source of isogenic embryonic stem cells for future regenerative therapies.


Artificial twinning In vitro fertilization Complex diseases Prevention Preimplantation genetic screening 



Special thanks to all the colleagues from the Beijing Institute of Genomics (BIG) for helpful discussions that substantially improved the quality of this work.

Authors’ Contributions

AC conceived the study, performed the statistical analysis, and wrote the manuscript. LA coordinated the study, participated in the study design, and helped to draft and edit the manuscript. All authors read and approved the final manuscript.


This study was supported by grant 2011Y1SA09 from the Chinese Academy of Sciences Fellowship for Young International Scientists and by grant 31150110466 from the National Natural Science Foundation of China (NSFC) to AC.


  1. 1.
    Crow, J. F. (2000). The origins, patterns and implications of human spontaneous mutation. Nature Reviews Genetics, 1, 40–47.CrossRefGoogle Scholar
  2. 2.
    Stephan, C. N., & Henneberg, M. (2001). Medicine may be reducing the human capacity to survive. Medical Hypotheses, 57(5), 633–637.CrossRefGoogle Scholar
  3. 3.
    Lynch, M. (2010). Rate, molecular spectrum, and consequences of human mutation. PNAS, 107(3), 961–968.CrossRefGoogle Scholar
  4. 4.
    Muller, H. J. (1950). Our load of mutations. American Journal of Human Genetics, 2, 111–176.Google Scholar
  5. 5.
    Dilworth C. (2009). Too smart for our own good: the ecological predicament of humankind, Cambridge University Press chap. 4:136.Google Scholar
  6. 6.
    Sawyer, S. A., Parsch, J., Zhang, Z., & Hartl, D. L. (2007). Prevalence of positive selection among nearly neutral amino acid replacements in drosophila. Proceedings of the National Academy of Sciences of the United States of America, 104(16), 6504–6510.CrossRefGoogle Scholar
  7. 7.
    Roach, J. C., Glusman, G., Smit, A. F. A., Huff, C. D., Hubley, R., Shannon, P. T., Rowen, L., Pant, K. P., Goodman, N., Bamshad, M., Shendure, J., Drmanac, R., Jorde, L. B., Hood, L., & Galas, D. J. (2010). Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328(5978), 636–639.CrossRefGoogle Scholar
  8. 8.
    Nachman, M. W., & Crowell, S. L. (2000). Estimate of the mutation rate per nucleotide in humans. Genetics, 156, 297–304.Google Scholar
  9. 9.
    Eyre-Walker, A., & Keightley, P. D. (1999). High genomic deleterious mutation rates in hominids. Nature, 397, 344–347.CrossRefGoogle Scholar
  10. 10.
    Eory, L., Halligan, D. L., & Keightley, P. D. (2010). Distributions of selectively constrained sites and deleterious mutation rates in the hominid and murid genomes. Molecular Biology and Evolution, 27, 177–192.CrossRefGoogle Scholar
  11. 11.
    MacArthur, D. G., Balasubramanian, S., Frankish, A., Huang, N., Morris, J., Walter, K., Jostins, L., Habegger, L., Pickrell, J. K., Montgomery, S. B., Albers, C. A., Zhang, Z. D., Conrad, D. F., Lunter, G., Zheng, H., Ayub, Q., DePristo, M. A., Banks, E., Hu, M., Handsaker, R. E., Rosenfeld, J. A., Fromer, M., Jin, M., Mu, X. J., Khurana, E., Ye, K., Kay, M., Saunders, G. I., Suner, M. M., Hunt, T., IHA, B., Amid, C., Carvalho-Silva, D. R., Bignell, A. H., Snow, C., Yngvadottir, B., Bumpstead, S., Cooper, D. N., Xue, Y., Romero, I. G., Consortium, G. P., Wang, J., Li, Y., Gibbs, R. A., McCarroll, S. A., Dermitzakis, E. T., Pritchard, J. K., Barrett, J. C., Harrow, J., Hurles, M. E., Gerstein, M. B., & Tyler-Smith, C. (2012). A systematic survey of loss-of-function variants in human protein-coding genes. Science, 335(6070), 823–828.CrossRefGoogle Scholar
  12. 12.
    (WHOSIS) WSIS (2009). World Health Statistics [].
  13. 13.
    Darwin, C. (1871). The descent of man, and selection in relation to sex. London: Murray.CrossRefGoogle Scholar
  14. 14.
    Glad, J. (2008). Future human evolution: eugenics in the twenty-first century. Hermitage Publishers. [Available at:].
  15. 15.
    Kevles, D.J. (1985). In the name of eugenics: genetics and the uses of human heredity. University of California Press, Berkeley and Los Angeles. [Available at:].
  16. 16.
    Chiu, R. W., Akolekar, R., Zheng, Y. W., Leung, T. Y., Sun, H., Chan, K. C., Lun, F. M., Go, A. T., Lau, E. T., To, W. W., Leung, W. C., Tang, R. Y., Au-Yeung, S. K., Lam, H., Kung, Y. Y., Zhang, X., van Vugt, J. M., Minekawa, R., Tang, M. H., Wang, J., Oudejans, C. B., Lau, T. K., Nicolaides, K. H., & Lo, Y. M. (2011). Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ, 342, c7401.CrossRefGoogle Scholar
  17. 17.
    Bell, C. J., Dinwiddie, D. L., Miller, N. A., Hateley, S. L., Ganusova, E. E., Mudge, J., Langley, R. J., Zhang, L., Lee, C. C., Schilkey, F. D., Sheth, V., Woodward, J. E., Peckham, H. E., Schroth, G. P., Kim, R. W., & Kingsmore, S. F. (2011). Carrier testing for severe childhood recessive diseases by next-generation sequencing. Science Translational Medicine, 3(65), 65ra4.CrossRefGoogle Scholar
  18. 18.
    Lieber, D. S., Vafai, S. B., Horton, L. C., Slate, N. G., Liu, S., Borowsky, M. L., Calvo, S. E., Schmahmann, J. D., & Mootha, V. K. (2012). Atypical case of Wolfram syndrome revealed through targeted exome sequencing in a patient with suspected mitochondrial disease. BMC Medical Genetics, 13(3).Google Scholar
  19. 19.
    Craven, L., Tuppen, H. A., Greggains, G. D., Harbottle, S. J., Murphy, J. L., Cree, L. M., Murdoch, A. P., Chinnery, P. F., Taylor, R. W., Lightowlers, R. N., Herbert, M., & Turnbull, D. M. (2010). Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature, 465, 82–85.CrossRefGoogle Scholar
  20. 20.
    Illmensee, K., Levanduski, M., Vidali, A., Husami, N., & Goudas, V. T. (2010). Human embryo twinning with applications in reproductive medicine. Fertility and Sterility, 93(2), 423–427.CrossRefGoogle Scholar
  21. 21.
    Trounson, A., & Mohr, L. (1983). Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature, 305, 707–709.CrossRefGoogle Scholar
  22. 22.
    van Dongen, J., Slagboom, P. E., Draisma, H. H. M., Martin, N. G., & Boomsma, D. I. (2012). The continuing value of twin studies in the omics era. Nature Reviews Genetics, 13(9), 640–653.CrossRefGoogle Scholar
  23. 23.
    Redondo, M. J., Yu, L., Hawa, M., Mackenzie, T., Pyke, D. A., Eisenbarth, G. S., & Leslie, R. D. G. (2001). Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia, 44, 354–362.CrossRefGoogle Scholar
  24. 24.
    Kumar, D., Gemayel, N. S., Deapen, D., Kapadia, D., Yamashita, P. H., Lee, M., Dwyer, J. H., Roy-Burman, P., Bray, G. A., & Mack, T. M. (1993). North-American twins with IDDM: genetic, etiological and clinical significance of disease concordance according age, zygosity, and the interval after diagnosis in first twin. Diabetes, 42, 1351–1363.CrossRefGoogle Scholar
  25. 25.
    Olmos, P., A’Hern, R., Heaton, D. A., Millward, B. A., Risley, D., Pyke, D. A., & Leslie, R. D. (1988). The significance of the concor- dance rate for type 1 (insulin-dependent) diabetes in identical twins. Diabetologia, 31, 747–750.CrossRefGoogle Scholar
  26. 26.
    Hyttinen, V., Kaprio, J., Kinnunen, L., Koskenvuo, M., & Tuomilehto, J. (2003). Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs. A nationwide follow-up study. Diabetes, 52, 1052–1055.CrossRefGoogle Scholar
  27. 27.
    Kyvik, K. O., Green, A., & Beck-Nielsen, H. (1995). Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ, 311(7010), 913–917.CrossRefGoogle Scholar
  28. 28.
    Metcalfe, K. A., Hitman, G. A., Rowe, R. E., Hawa, M., Huang, X., Stewart, T., & Leslie, D. G. (2001). Concordance for type 1 diabetes in identical twins is affected by insulin genotype. Diabetes Care, 24, 838–842.CrossRefGoogle Scholar
  29. 29.
    Newman, B., Selby, J. V., King, M. C., Slemenda, C., Fabsitz, R., & Friedman, G. D. (1987). Concordance for type 2 (non- insulin-dependent) diabetes mellitus in male twins. Diabetologia, 30(10), 763–768.CrossRefGoogle Scholar
  30. 30.
    Gerich, J. E. (1998). The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocrine Reviews, 19(4), 491–450.CrossRefGoogle Scholar
  31. 31.
    Committee on Diabetic Twins, Japan Diabetes Society. (1988). Diabetes mellitus in twins: a cooperative study in Japan. Committee on Diabetic Twins, Japan Diabetes Society. Diabetes Research and Clinical Practice, 5(4), 271–280.CrossRefGoogle Scholar
  32. 32.
    Kaprio, J., Tuomilehto, J., Koskenvuo, M., Romanov, K., Reunanen, A., Eriksson, J., Stengård, J., & Kesäniemi, Y. A. (1992). Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia, 35(11), 1060–1067.CrossRefGoogle Scholar
  33. 33.
    Medici, F., Hawa, M., Ianari, A., Pyke, D. A., & Leslie, R. D. (1999). Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia, 42(2), 146–150.CrossRefGoogle Scholar
  34. 34.
    Berkovic, S. F., Howell, R. A., Hay, D. A., & Hopper, J. L. (1998). Epilepsies in twins: genetics of the major epilepsy syndromes. Annals of Neurology, 43(4), 435–445.CrossRefGoogle Scholar
  35. 35.
    Kjeldsen, M. J., Kyvik, K. O., Christensen, K., & Friis, M. L. (2001). Genetic and environmental factors in epilepsy: a population-based study of 11 900 Danish twin pairs. Epilepsy Research, 44, 167–178.CrossRefGoogle Scholar
  36. 36.
    Kjeldsen, M. J., Corey, L. A., Christensen, K., & Friis, M. L. (2003). Epileptic seizures and syndromes in twins: the importance of genetic factors. Epilepsy Research, 55(1–2), 137–146.CrossRefGoogle Scholar
  37. 37.
    Coreya, L. A., Pellock, J. M., Kjeldsend, M. J., & Nakken, K. O. (2011). Importance of genetic factors in the occurrence of epilepsy syndrome type: a twin study. Epilepsy Research, 97, 103–111.CrossRefGoogle Scholar
  38. 38.
    Eckhaus, J., Lawrence, K. M., Helbig, I., Bui, M., Vadlamudi, L., Hopper, J. L., Scheffer, I. E., & Berkovic, S. F. (2013). Genetics of febrile seizure subtypes and syndromes: a twin study. Epilepsy Research, 105(1–2), 103–109.CrossRefGoogle Scholar
  39. 39.
    Vadlamudi, L., Milne, R. L., Lawrence, K., Heron, S. E., Eckhaus, J., Keay, D., Connellan, M., Torn-Broers, Y., Howell, R. A., Mulley, J. C., Scheffer, I. E., Dibbens, L. M., Hopper, J. L., & Berkovic, S. F. (2014). Genetics of epilepsy. The testimony of twins in the molecular era. Neurology, 83(12), 1042–1048.CrossRefGoogle Scholar
  40. 40.
    Folstein, S. E., & Rutter, M. L. (1977). Infantile autism: a genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18, 297–321.CrossRefGoogle Scholar
  41. 41.
    Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I. C., Jakobsson, G., & Bohman, M. (1989). A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. Journal of Child Psychology and Psychiatry, 30(3), 405–416.CrossRefGoogle Scholar
  42. 42.
    Bailey, A., Couteur, A. L., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., & Rutter, M. (1995). Autism as a strongly genetic disorder: evidence from a British twin study. Psychological Medicine, 25, 63–77.CrossRefGoogle Scholar
  43. 43.
    Ronald, A., & Hoekstra, R. A. (2011). Autism spectrum disorders and autistic traits: a decade of new twin studies. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B(3), 255–274.CrossRefGoogle Scholar
  44. 44.
    Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., Miller, J., Fedele, A., Collins, J., Smith, K., Lotspeich, L., Croen, L. A., Ozonoff, S., Lajonchere, C., Grether, J. K., & Risch, N. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68(11), 1095–1102.CrossRefGoogle Scholar
  45. 45.
    Rosenberg, R. E., Law, J. K., Yenokyan, G., McGready, J., Kaufmann, W. E., & Law, P. A. (2009). Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Archives of Pediatrics and Adolescent Medicine, 163(10), 907–914.CrossRefGoogle Scholar
  46. 46.
    Ritvo, E. R., Freeman, B. J., Mason-Brothers, A., Mo, A., & Ritvo, A. M. (1985). Concordance for the syndrome of autism in 40 pairs of afflicted twins. The American Journal of Psychiatry, 142, 74–77.CrossRefGoogle Scholar
  47. 47.
    Bertelson, A., Harvald, B., & Hauge, M. (1977). A Danish twin study of manic-depressive disorder. The British Journal of Psychiatry, 130, 330–351.CrossRefGoogle Scholar
  48. 48.
    Kieseppä, T., Partonen, T., Haukka, J., Kaprio, J., & Lönnqvist, J. (2004). High concordance of bipolar I disorder in a nationwide sample of twins. The American Journal of Psychiatry, 161(10), 1814–1821.CrossRefGoogle Scholar
  49. 49.
    Sicherer, S. H., Furlong, T. J., Maes, H. H., Desnick, R. J., Sampson, H. A., & Gelb, B. D. (2000). Genetics of peanut allergy: a twin study. The Journal of Allergy and Clinical Immunology, 106(1/1), 53–56.CrossRefGoogle Scholar
  50. 50.
    Edfors-Lubs, M. L. (1971). Allergy in 7000 twin pairs. Acta Allergologica, 26(4), 249–285.CrossRefGoogle Scholar
  51. 51.
    Wüthrich, B., Baumann, E., Fries, R. A., & Schnyder, U. W. (1981). Total and specific IgE (RAST) in atopic twins. Clinical Allergy, 11, 147–154.CrossRefGoogle Scholar
  52. 52.
    David, P. S., Wong, H. J., & Spector, T. D. (2001). Concordance and interrelationship of atopic diseases and markers of allergic sensitization among adult female twins. The Journal of Allergy and Clinical Immunology, 108(6), 901–907.CrossRefGoogle Scholar
  53. 53.
    Koeppen-Schomerus, G., Stevenson, J., & Plomin, R. (2001). Genes and environment in asthma: a study of 4 year old twins. Archives of Disease in Childhood, 85(5), 398–400.CrossRefGoogle Scholar
  54. 54.
    Gatz, M., Reynolds, C. A., Fratiglioni, L., Johansson, B., Mortimer, J. A., Berg, S., Fiske, A., & Pedersen, N. L. (2006). Role of genes and environments for explaining Alzheimer disease. Archives of General Psychiatry, 63, 168–174.CrossRefGoogle Scholar
  55. 55.
    Lichtenstein, P., Holm, N. V., Verkasalo, P. K., Iliadou, A., Kaprio, J., Koskenvuo, M., Pukkala, E., Skytthe, A., & Hemminki, K. (2000). Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. New England Journal of Medicine, 343(2), 78–85.CrossRefGoogle Scholar
  56. 56.
    Karvonen, M., Pitkäniemi, J., & Tuomilehto, J. (1999). The onset age of type 1 diabetes in Finnish children has become younger. The Finnish Childhood Diabetes Registry Group. Diabetes Care, 22(7), 1066–1070.CrossRefGoogle Scholar
  57. 57.
    Wang, W., McGreevey, W. P., Fu, C., Zhan, S., Luan, R., Chen, W., & Xu, B. (2009). Type 2 diabetes mellitus in China: a preventable economic burden. The American Journal of Managed Care, 15(9), 593–601.Google Scholar
  58. 58.
    Rubio-Tapia, A., Kyle, R. A., Kaplan, E. L., Johnson, D. R., Page, W., Erdtmann, F., Brantner, T. L., Kim, W. R., Phelps, T. K., Lahr, B. D., Zinsmeister, A. R., Melton III, L., & Murray, J. A. (2009). Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology, 137, 88–93.CrossRefGoogle Scholar
  59. 59.
    Kogan, M. D., Blumberg, S. J., Schieve, L. A., Boyle, C. A., Perrin, J. M., Ghandour, R. M., Singh, G. K., Strickland, B. B., Tre-vathan, E., & van Dyck, P. C. (2009). Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics, 124(5), 1395–1403.CrossRefGoogle Scholar
  60. 60.
    Autism and Developmental Disabilities Monitoring Network Surveillance Year 2006 Principal Investigators; Centers for Disease Control and Prevention (CDC). (2009). Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, United States, 2006. MMWR Surveillance Summaries, 58(10), 1–20.Google Scholar
  61. 61.
    Allergist report. Tech. rep., The American College of Allergy, Asthma and Immunology 2008. [Available at:].
  62. 62.
    Wang, J., Fan, H. C., Behr, B., & Quake, S. R. (2012). Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell, 150, 402–412.CrossRefGoogle Scholar
  63. 63.
    Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., Gudjonsson, S. A., Sigurdsson, A., Jonas-dottir, A., Jonasdottir, A., Wong, W. S. W., Sigurdsson, G., Walters, G. B., Steinberg, S., Helgason, H., Thorleifsson, G., Gudbjartsson, D. F., Helgason, A., Magnusson, O. T., Thorsteinsdottir, U., & Stefansson, K. (2012). Rate of de novo mutations and the importance of father’s age to disease risk. Nature, 488, 471–475.CrossRefGoogle Scholar
  64. 64.
    Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., Ercan-Sencicek, A. G., DiLullo, N. M., Parikshak, N. N., Stein, J. L., Walker, M. F., Ober, G. T., Teran, N. A., Song, Y., El-Fishawy, P., Murtha, R. C., Choi, M., Overton, J. D., Bjornson, R. D., Carriero, N. J., Meyer, K. A., Bilguvar, K., Mane, S. M., Sěstan, N., Lifton, R. P., Günel, M., Roeder, K., Geschwind, D. H., Devlin, B., & State, M. W. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485(7397), 237–241.CrossRefGoogle Scholar
  65. 65.
    Croen, L. A., Najjar, D. V., Fireman, B., & Grether, J. K. (2007). Maternal and paternal age and risk of autism spectrum disorders. Archives of Pediatrics & Adolescent Medicine, 161, 334–340.CrossRefGoogle Scholar
  66. 66.
    Malaspina, D. P. (2001). Paternal factors and schizophrenia risk: de novo mutations and imprinting. Schizophrenia Bulletin, 27, 379–393.CrossRefGoogle Scholar
  67. 67.
    Frans, E. M., Sandin, S., Reichenberg, A., Lichtenstein, P., Långström, N., & Hultman, C. M. (2008). Advancing paternal age and bipolar disorder. Archives of General Psychiatry, 65(9), 1034–1040.CrossRefGoogle Scholar
  68. 68.
    Menezes, P. R., Lewis, G., Rasmussen, F., Zammit, S., Sipos, A., Harrison, G. L., Tynelius, P., & Gunnell, D. (2010). Paternal and maternal ages at conception and risk of bipolar affective disorder in their offspring. Psychological Medicine, 40(3), 477–485.CrossRefGoogle Scholar
  69. 69.
    Zhu, J. L., Vestergaard, M., Madsen, K. M., & Olsen, J. (2008). Paternal age and mortality in children. European Journal of Epidemiology, 23(7), 443–447.CrossRefGoogle Scholar
  70. 70.
    Deciphering Developmental Disorders Study. (2017). Prevalence and architecture of de novo mutations in developmental disorders. Nature, 542(7642), 433–438.CrossRefGoogle Scholar
  71. 71.
    Harper, J. C., Coonen, E., Rycke, M. D., Harton, G., Moutou, C., Pehlivan, T., Traeger-Synodinos, J., Van Rij, M., & Goossens, V. (2010). ESHRE PGD consortium data collection X: cycles from January to December 2007 with pregnancy follow-up to October 2008. Human Reproduction, 25(11), 2685–2707.CrossRefGoogle Scholar
  72. 72.
    Tachibana, M., Sparman, M., Sritanaudomchai, H., Ma, H., Clepper, L., Woodward, J., Li, Y., Ramsey, C., Kolotushkina, O., & Mitalipov, S. (2009). Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature, 461(7262), 367–372.CrossRefGoogle Scholar
  73. 73.
    Chen S, Ge H, Wang X, Pan X, Yao X, Li X, et al (2013) Haplotype-assisted accurate non-invasive fetal whole genome recovery through maternal plasma sequencing. Genome Med. 5(2).Google Scholar
  74. 74.
    Kitzman, J. O., Snyder, M. W., Ventura, M., Lewis, A. P., et al. (2012). Noninvasive whole-genome sequencing of a human fetus. Science Translational Medicine, 4(137), 137ra76.CrossRefGoogle Scholar
  75. 75.
    Chitty, L. S., Mason, S., Barrett, A. N., McKay, F., Lench, N., Daley, R., & Jenkins, L. A. (2015). Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenatal Diagnosis, 35(7), 656–662.CrossRefGoogle Scholar
  76. 76.
    Srinivasan, B. S., Evans, E. A., Flannick, J., Patterson, A. S., Chang, C. C., Pham, T., Young, S., Kaushal, A., Lee, J., Jacobson, J. L., & Patrizio, P. (2010). A universal carrier test for the long tail of Mendelian disease. Reproductive Biomedicine Online, 21(4), 537–551.CrossRefGoogle Scholar
  77. 77.
    Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813.CrossRefGoogle Scholar
  78. 78.
    Edwards, J. L., Schrick, F. N., McCracken, M. D., van Amstel, S. R., Hopkins, F. M., Welborn, M. G., & Davies, C. J. (2003). Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. American Journal of Reproductive Immunology, 50, 113–123.CrossRefGoogle Scholar
  79. 79.
    Tsunoda, Y., & Kato, Y. (2002). Recent progress and problems in animal cloning. Differentiation, 69, 158–161.CrossRefGoogle Scholar
  80. 80.
    Mitalipov, S., & Wolf, D. (2009). Totipotency, pluripotency and nuclear reprogramming. Advances in Biochemical Engineering and Biotechnology, 114, 185–199.Google Scholar
  81. 81.
    Meng, L., Ely, J. J., Stouffer, R. L., & Wolf, D. P. (1997). Rhesus monkeys produced by nuclear transfer. Biology of Reproduction, 57, 454–459.CrossRefGoogle Scholar
  82. 82.
    Mitalipov, S. M., Yeoman, R. R., Nusser, K. D., & Wolf, D. P. (2002). Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biology of Reproduction, 66, 1367–1373.CrossRefGoogle Scholar
  83. 83.
    Wolf, D. P., Meng, L., Ouhibi, N., & Zelinski-Wooten, M. (1999). Nuclear transfer in rhesus monkeys: practical and basic implications. Biology of Reproduction, 60, 199–204.CrossRefGoogle Scholar
  84. 84.
    Simerly, C., Dominko, T., Navara, C., Payne, C., Capuano, S., Gosman, G., Chong, K., Takahashi, D., Chace, C., Compton, D., Hewitson, L., & Schatten, G. (2003). Molecular correlates of primate nuclear transfer failures. Science, 300(5617), 297.CrossRefGoogle Scholar
  85. 85.
    Mapletoft, R. J., & Hasler, J. F. (2005). Assisted reproductive technologies in cattle: a review. Revue Scientifique et Technique (International Office of Epizootics), 24, 393–403.Google Scholar
  86. 86.
    Evans, M. J., Gurer, C., Loike, J. D., Wilmut, I., Schnieke, A. E., & Schon, E. A. (1999). Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nature Genetics, 23, 90–93.CrossRefGoogle Scholar
  87. 87.
    Schramm RD, Paprocki AM (2004) Strategies for the production of genetically identical monkeys by embryo splitting. Reproductive Biology and Endocrinology. 2(38).Google Scholar
  88. 88.
    Dawson, L., Bateman-House, A. S., Mueller, A. D., Bok, H., Brock, D. W., Chakravarti, A., Greene, M., King, P. A., O’Brien, S. J., Sachs, D. H., Schill, K. E., Siegel, A., Solter, D., Suter, S. M., Verfaillie, C. M., Walters, L. B., Gearhart, J. D., & Faden, R. R. (2003). Safety issues in cell-based intervention trials. Fertility and Sterility, 80(5), 1077–1085.CrossRefGoogle Scholar
  89. 89.
    Ginis, I., & Rao, M. S. (2003). Toward cell replacement therapy: promises and caveats. Experimental Neurology, 184, 61–77.CrossRefGoogle Scholar
  90. 90.
    Taylor, C. J., Bolton, E. M., Pocock, S., Sharples, L. D., Pedersen, R. A., & Bradley, J. A. (2005). Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet, 366(9502), 2019–2025.CrossRefGoogle Scholar
  91. 91.
    Gurdon, J. B., & Colman, A. (1999). The future of cloning. Nature, 402, 743–746.CrossRefGoogle Scholar
  92. 92.
    Lanza, R. P., Cibelli, J. B., & West, M. D. (1999). Human therapeutic cloning. Nature Medicine, 5(9), 975–977.CrossRefGoogle Scholar
  93. 93.
    Stojkovic, M., Stojkovic, P., Leary, C., Hall, V. J., Armstrong, L., Herbert, M., Nesbitt, M., Lako, M., & Murdoch, A. (2005). Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reproductive Biomedicine Online, 11(2), 226–231.CrossRefGoogle Scholar
  94. 94.
    Pomerantz, J., & Blau, H. M. (2004). Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nature Cell Biology, 6(9), 810–816.CrossRefGoogle Scholar
  95. 95.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.CrossRefGoogle Scholar
  96. 96.
    Zaehres, H., & Scholer, H. R. (2007). Induction of pluripotency: from mouse to human. Cell, 131(5), 834–835.CrossRefGoogle Scholar
  97. 97.
    Wilmut, I. (2007). The first direct reprogramming of adult human fibroblasts cell. Cell Stem Cell, 1(6), 593–594.CrossRefGoogle Scholar
  98. 98.
    Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., & Yamanaka, S. (2008). Generation of pluripo- tent stem cells from adult mouse liver and stomach cells. Science, 321(5889), 699–702.CrossRefGoogle Scholar
  99. 99.
    Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 260–262.CrossRefGoogle Scholar
  100. 100.
    Gutierrez-Aranda, I., Ramos-Mejia, V., Bueno, C., Munoz-Lopez, M., Real, P. J., Mácia, A., Sanchez, L., Ligero, G., Garcia-Parez, J. L., & Menendez, P. (2010). Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells, 28(9), 1568–1570.CrossRefGoogle Scholar
  101. 101.
    Knoepfler, P. S. (2009). Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells, 27(5), 1050–1056.CrossRefGoogle Scholar
  102. 102.
    Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., Hon, G., Antosiewicz-Bourget, J., O’Malley, R., Castanon, R., Klugman, S., Downes, M., Yu, R., Stewart, R., Ren, B., Thomson, J. A., Evans, R. M., & Ecker, J. R. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471(7336), 68–73.CrossRefGoogle Scholar
  103. 103.
    Haller, M. J., Viener, H. L., Wasserfall, C., Brusko, T., Atkinson, M. A., & Schatz, D. A. (2008). Autologous umbilical cord blood infusion for type 1 diabetes. Experimental Hematology, 36(6), 710–715.CrossRefGoogle Scholar
  104. 104.
    Harris, D. T., Badowski, M., Ahmad, N., & Gaballa, M. A. (2007). The potential of cord blood stem cells for use in regenerative medicine. Expert Opinion on Biological Therapy, 7(9), 1311–1322.CrossRefGoogle Scholar
  105. 105.
    Noli, L., Ogilvie, C., Khalaf, Y., & Ilic, D. (2017). Potential of human twin embryos generated by embryo splitting in assisted reproduction and research. Human Reproduction Update, 23(2), 156–165.Google Scholar
  106. 106.
    Lewis, I. M. (1994). Splitting cattle embryos commercially. The effect of sucrose, embryo stage and the duration between embryo recovery and bisection. Theriogenology, 41(237).Google Scholar
  107. 107.
    Hygate, L., Knee, B., Lewis, I. (1995) An embryo splitting program to improve carcass quality for the Japanese beef market. In The 11th conference of Australian Association of Animal Breeding and Genetics: Breeding for Quality and Profit. Australian Association of Animal Breeding and Genetics, Adelaide, South Australia.Google Scholar
  108. 108.
    Johnson, W. H., Loskutoff, N. M., Plante, Y., & Betteridge, K. J. (1995). Production of four identical calves by the separation of blastomeres from an in-vitro derived four-cell embryo. The Veterinary Record, 137, 15–16.CrossRefGoogle Scholar
  109. 109.
    Seike, N., Sakai, M., & Kanagawa, H. (1991). Development of frozen-thawed demiembryos and production of identical twin calves of different ages. The Journal of Veterinary Medical Science, 53, 37–42.CrossRefGoogle Scholar
  110. 110.
    Illmensee, K., Kaskar, K., & Zavos, P. M. (2005). Efficient blastomere biopsy for mouse embryo splitting for future applications in human assisted reproduction. Reproductive Biomedicine Online, 11(6), 716–725.CrossRefGoogle Scholar
  111. 111.
    Mitalipov, S. M., Yeoman, R. R., Kuo, H. C., & Wolf, D. P. (2002). Monozygotic twinning in rhesus monkeys by manipulation of in vitro-derived embryos. Biology of Reproduction, 66, 1449–1455.CrossRefGoogle Scholar
  112. 112.
    Wood, C. (2001). Embryo splitting: a role in infertility? Reproduction, Fertility and Development, 13, 91–93.CrossRefGoogle Scholar
  113. 113.
    Machin, G. A. (1996). Some causes of genotypic and phenotypic discordance in monozygotic twin pairs. American Journal of Medical Genetics, 61, 216–228.CrossRefGoogle Scholar
  114. 114.
    Noli, L., Capalbo, A., Ogilvie, C., Khalaf, Y., & Ilic, D. (2015). Discordant growth of monozygotic twins starts at the blastocyst stage: a case study. Stem Cell Reports, 5(6), 946–953.CrossRefGoogle Scholar
  115. 115.
    Bruder, C. E. G., Piotrowski, A., Gijsbers, A. A. C. J., Andersson, R., Erickson, S., de Ståhl, T. D., Menzel, U., Sandgren, J., von Tell, D., Poplawski, A., Crowley, M., Crasto, C., Partridge, E. C., Tiwari, H., Allison, D. B., Komorowski, J., van Ommen, G. J. B., Boomsma, D. I., Pedersen, N. L., den Dunnen, J. T., Wirdefeldt, K., & Dumanski, J. P. (2008). Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. The American Journal of Human Genetics, 82(3), 763–771.CrossRefGoogle Scholar
  116. 116.
    De, S. (2011). Somatic mosaicism in healthy human tissues. Trends in Genetics, 27, 217–223.CrossRefGoogle Scholar
  117. 117.
    Singh, S. M., Murphy, B., & O’Reilly, R. (2002). Epigenetic contributors to the discordance of monozygotic twins. Clinical Genetics, 62, 97–103.CrossRefGoogle Scholar
  118. 118.
    Illmensee, K., Levanduski, M., Konialis, C., Pangalos, C., Vithoulkas, A., & Goudas, V. T. (2011). Human embryo twinning with proof of monozygocity. Middle East Fertility Society Journal, 16, 215–219.CrossRefGoogle Scholar
  119. 119.
    Baranzini, S. E., Mudge, J., van Velkinburgh, J. C., Khankhanian, P., Khrebtukova, I., Miller, N. A., Zhang, L., Farmer, A. D., Bell, C. J., Kim, R. W., May, G. D., Woodward, J. E., Caillier, S. J., McElroy, J. P., Gomez, R., Pando, M. J., Clendenen, L. E., Ganusova, E. E., Schilkey, F. D., Ramaraj, T., Khan, O. A., Huntley, J. J., Luo, S., Kwok, P., Wu, T. D., Schroth, G. P., Oksenberg, J. R., Hauser, S. L., & Kingsmore, S. F. (2010). Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature, 464, 1351–1356.CrossRefGoogle Scholar
  120. 120.
    Weber-Lehmann, J., Schilling, E., Gradl, G., Richter, D. C., Wiehler, J., & Rolf, B. (2014). Finding the needle in the haystack: Differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Science International. Genetics, 9, 42–46.CrossRefGoogle Scholar
  121. 121.
    Krawczak, M., & Cooper, D. N. (2012). How to distinguish genetically between an alleged father and his monozygotic twin: a thought experiment. Forensic Science International. Genetics, 6, 129–130.CrossRefGoogle Scholar
  122. 122.
    Yeoman, Y. Y., Gerami-Naini, B., Mitalipov, S., Nusser, K. D., Widmann-Browning, A. A., & Wolf, D. P. (2001). Cryo-loop vitrification yields superior survival of rhesus monkey blastocysts. Human Reproduction, 16, 1965–1969.CrossRefGoogle Scholar
  123. 123.
    Loutradi, K. E., Kolibianakis, E. M., Venetis, C. A., Papanikolaou, E. G., Pados, G., Bontis, I., & Tarlatzis, B. C. (2008). Cryopreservation of human embryos by vitrification or slow freezing: a systematic review and meta-analysis. Fertility and Sterility, 90, 186–193.CrossRefGoogle Scholar
  124. 124.
    Rezazadeh, V. M., Eftekhari-Yazdi, P., Karimian, L., Hassani, F., & Movaghar, B. (2009). Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos. Journal of Assisted Reproduction and Genetics, 26(6), 347–354.CrossRefGoogle Scholar
  125. 125.
    Cobo, A., Meseguer, M., Remohí, J., & Pellicer, A. (2010). Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Human Reproduction, 25(9), 2239–2246.CrossRefGoogle Scholar
  126. 126.
    Cobo, A., & Diaz, C. (2011). Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertility and Sterility, 96(2), 277–285.CrossRefGoogle Scholar
  127. 127.
    Chan, A. W. S., Dominko, T., Luetjens, C. M., Neuber, E., Martinovich, C., Hewitson, L., Simerly, C. R., & Schatten, G. P. (2000). Clonal propagation of primate offspring by embryo splitting. Science, 287(5451), 317–319.CrossRefGoogle Scholar
  128. 128.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.CrossRefGoogle Scholar
  129. 129.
    Amit, M., Carpenter, M. K., Inokuma, M. S., Chiu, C. P., Harris, C. P., Waknitz, M. A., Itskovitz-Eldor, J., & Thomson, J. A. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental Biology, 227(2), 271–278.CrossRefGoogle Scholar
  130. 130.
    Eiges, R., Schuldiner, M., Drukker, M., Yanuka, O., Itskovitz-Eldor, J., & Benvenisty, N. (2001). Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Current Biology, 11(7), 514–518.CrossRefGoogle Scholar
  131. 131.
    Odorico, J. S., Kaufman, D. S., & Thomson, J. A. (2001). Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 19(3), 193–204.CrossRefGoogle Scholar
  132. 132.
    Illmensee, K., Kaskar, K., & Zavos, P. (2006). In vitro blastocyst development from serially split mouse embryos and future implications for human ART. Fertility and Sterility, 86, 1112–1120.CrossRefGoogle Scholar
  133. 133.
    Bianchi, E., & Sette, C. (2011). Post-transcriptional control of gene expression in mouse early embryo development: a view from the tip of the iceberg. Genes, 2(2), 345–359.CrossRefGoogle Scholar
  134. 134.
    Edwards, R. G. (2006). Genetics, epigenetics and gene silencing in differentiating mammalian embryos. Reproductive Biomedicine Online, 13(5), 732–753.CrossRefGoogle Scholar
  135. 135.
    Stadler, M. B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Schöler, A., Wirbelauer, C., Oakeley, E. J., Gaidatzis, D., Tiwari, V. K., & Schübeler, D. (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480, 490–495.Google Scholar
  136. 136.
    Noli, L., Capalbo, A., Dajani, Y., Cimadomo, D., Bvumbe, J., Rienzi, L., Ubaldi, F. M., Ogilvie, C., Khalaf, Y., & Ilic, D. (2016). Human embryos created by embryo splitting secrete significantly lower levels of miRNA-30c. Stem Cells and Development, 25(24), 1853–1862.CrossRefGoogle Scholar
  137. 137.
    Noli, L., Dajani, Y., Capalbo, A., Bvumbe, J., Rienzi, L., Ubaldi, F. M., Ogilvie, C., Khalaf, Y., & Ilic, D. (2015). Developmental clock compromises human twin model created by embryo splitting. Human Reproduction, 30(12), 2774–2784.Google Scholar
  138. 138.
    Zhao, S., Zhao, X., Du, W., Hao, H., Liu, Y., Qin, T., Wang, D., & Zhu, H. (2015). Production of early monozygotic twin bovine embryos in vitro by the blastomere separation and coculture technique. Journal of Integrative Agriculture, 14(10), 2034–2041.CrossRefGoogle Scholar
  139. 139.
    Van de Velde, H., Cauffman, G., Tournaye, H., Devroey, P., & Liebaers, I. (2008). The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Human Reproduction, 23(8), 1742–1747.CrossRefGoogle Scholar
  140. 140.
    Geens, M., Mateizel, I., Sermon, K., De Rycke, M., Spits, C., Cauffman, G., Devroey, P., Tournaye, H., Liebaers, I., & Van de Velde, H. (2009). Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Human Reproduction, 24(11), 2709–2717.CrossRefGoogle Scholar
  141. 141.
    Illmenseea, K., Kaskar, K., & Zavosa, P. M. (2006). In-vitro developmental potential of individual mouse blastomeres cultured with and without zona pellucida: future implications for human assisted reproduction. Reproductive Biomedicine Online, 13(2), 284–294.CrossRefGoogle Scholar
  142. 142.
    Riggs, R., Mayer, J., Dowling-Lacey, D., Chi, T. F., Jones, E., & Oehninger, S. (2008). Does storage time influence postthaw survival and pregnancy outcome? An analysis of 11,768 cryopreserved human embryos. Fertility and Sterility, 93, 109–115.CrossRefGoogle Scholar
  143. 143.
    Yashina, S., Gubin, S., Maksimovich, S., Yashina, A., Gakhova, E., & Gilichinsky, D. (2012). Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. PNAS, 109(10), 4008–4013.CrossRefGoogle Scholar
  144. 144.
    Pikuta, E. V., Marsic, D., Bej, A., Tang, J., Krader, P., & Hoover, R. B. (2005). Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the fox tunnel in Alaska. International Journal of Systematic and Evolutionary Microbiology, 55, 473–478.CrossRefGoogle Scholar
  145. 145.
    Bidle, K. D., Lee, S., Marchant, D. R., & Falkowski, P. G. (2007). Fossil genes and microbes in the oldest ice on earth. PNAS, 104(33), 13455–13460.CrossRefGoogle Scholar
  146. 146.
    Stahl, E. A., Wegmann, D., Trynka, G., Gutierrez-Achury, J., Do, R., Voight, B. F., Kraft, P., Chen, R., Kallberg, H. J., Kurree-man, F. A. S., Replication, D. G., analysis Consortium M, Consortium MIG, Kathiresan, S., Wijmenga, C., Gregersen, P. K., Alfredsson, L., Siminovitch, K. A., Worthington, J., de Bakker, P. I. W., Raychaudhuri, S., & Plenge, R. M. (2012). Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nature Genetics, 44(5), 483–489.CrossRefGoogle Scholar
  147. 147.
    Roberts NJ, Vogelstein JT, Parmigiani G, Kinzler KW, Vogelstein B, Velculescu VE (2012) The predictive capacity of personal genome sequencing. Science Translational Medicine. Google Scholar
  148. 148.
    Chuong, B. D., Hinds, D. A., Francke, U., & Eriksson, N. (2012). Comparison of family history and SNPs for predicting risk of complex disease. PLoS Genetics, 8(10), e1002973.CrossRefGoogle Scholar
  149. 149.
    Rzhetsky, A., Wajngurt, D., Park, N., & Zheng, T. (2007). Probing genetic overlap among complex human phenotypes. PNAS, 104(28), 11694–11699.CrossRefGoogle Scholar
  150. 150.
    Thomsen, S. F., van der Sluis, S., Kyvik, K. O., Skytthe, A., & Backer, V. (2010). Estimates of asthma heritability in a large twin sample. Clinical and Experimental Allergy, 40, 1054–1061.CrossRefGoogle Scholar
  151. 151.
    Nisticò, L., Fagnani, C., Coto, I., Percopo, S., Cotichini, R., Limongelli, M. G., Paparo, F., D’Alfonso, S., Giordano, M., Sferlazzas, C., Magazzù, G., Momigliano-Richiardi, P., Greco, L., & Stazi, M. A. (2006). Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut, 55(6), 803–808.CrossRefGoogle Scholar
  152. 152.
    Rees, M. I. (2010). The genetics of epilepsy—the past, the present and future. Seizure, 19(10), 680–683.CrossRefGoogle Scholar
  153. 153.
    Fujiwara, T., Nakamura, H., Watanabe, M., Yagi, K., Seino, M., & Nakamura, H. (1990). Clinicoelectrographic concordance between monozygotic twins with severe myoclonic epilepsy in infancy. Epilepsia, 31(3), 281–286.CrossRefGoogle Scholar
  154. 154.
    Vadlamudi, L., Dibbens, L. M., Lawrence, K. M., Iona, X., et al. (2010). Timing of de novo mutagenesis—a twin study of Sodium-Channel mutations. The New England Journal of Medicine, 363, 1335–1340.CrossRefGoogle Scholar
  155. 155.
    Epi4K Consortium and Epilepsy Phenome/Genome Project. (2013). De novo mutations in epileptic encephalopathies. Nature, 501, 217–221.CrossRefGoogle Scholar
  156. 156.
    Kjeldsen, M. J., Kyvik, K. O., Friis, M. L., & Christensen, K. (2002). Genetic and environmental factors in febrile seizures: a Danish population-based twin study. Epilepsy Research, 51(1–2), 167–177.CrossRefGoogle Scholar
  157. 157.
    Knip, M., Veijola, R., Virtanen, S. M., Hyoty, H., Vaarala, O., & Åkerblom, H. K. (2005). Environmental triggers and determinants of type 1 diabetes. Diabetes, 54(Suppl 2), S125–S136.CrossRefGoogle Scholar
  158. 158.
    Couper, J. J. (2001). Environmental triggers of type 1 diabetes. Journal of Paediatrics and Child Health, 37(3), 218–220.MathSciNetCrossRefGoogle Scholar
  159. 159.
    Virtanen, S. M., Räsänen, L., Aro, A., Ylönen, K., Lounamaa, R., Tuomilehto, J., & Åkerblom, H. K. (1992). Feeding in infancy and the risk of type 1 diabetes mellitus in Finnish children: the childhood diabetes in Finland study group. Diabetic Medicine, 9, 815–819.CrossRefGoogle Scholar
  160. 160.
    Hyppönen, E., Läärä, E., Reunanen, A., Järvelin, M. R., & Virtanen, S. M. (2001). Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet, 3(358), 1500–1503.CrossRefGoogle Scholar
  161. 161.
    Ilonen, J., Sjöroos, M., Knip, M., Veijola, R., Simell, O., Åkerblom, H. K., Paschou, P., Bozas, E., Havarini, B., Malamitsi-Puchner, A., Thymelli, J., Vazeou, A., & Bartsocas, C. S. (2002). Estimation of genetic risk for type 1 diabetes. American Journal of Medical Genetics, 115, 30–36.CrossRefGoogle Scholar
  162. 162.
    Fennessy, M., Metcalfe, K., Hitman, G. A., Niven, M., Biro, P. A., Tuomilehto, J., & Tuomilehto-Wolf, E. (1994). A gene in the HLA class I region contributes to susceptibility to IDDM in the Finnish population. Childhood diabetes in Finland (DiMe) study group. Diabetologia, 37(9), 937–944.CrossRefGoogle Scholar
  163. 163.
    Wolf, E., Tuomilehto, J., & Lounamaa, R. (1988). Can the high risk of type I diabetes in Finland be explained by familial aggregation and by HLA haplotype distribution?: Study group on childhood diabetes in Finland. Advances in Experimental Medicine and Biology, 246, 235–239.CrossRefGoogle Scholar
  164. 164.
    Tuomilehto-Wolf, E., & Tuomilehto, J. (1991). HLA antigenes in insulin-dependent diabetes mellitus. Annals of Medicine, 23(5), 481–488.CrossRefGoogle Scholar
  165. 165.
    Gloyn, A. L., Cummings, E. A., Edghill, E. L., Harries, L. W., Scott, R., Costa, T., Temple, I. K., Hattersley, A. T., & Ellard, S. (2004). Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 gene encoding the Kir6.2 subunit of the beta-cell potassium adenosine triphosphate channel. Journal of Clinical Endocrinology and Metabolism, 89(8), 3932–3935.CrossRefGoogle Scholar
  166. 166.
    Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J (2000) Incidence of childhood type 1 diabetes worldwide. Diabetes Care. 23(10).Google Scholar
  167. 167.
    Gale, E. A. M. (2002). The rise of childhood type 1 diabetes in the 20th century. Diabetes, 51(12), 3353–3361.CrossRefGoogle Scholar
  168. 168.
    Tuomilehto, J., Karvonen, M., Pitkäniemi, J., Virtala, E., Kohtamäki, K., Toivanen, L., & Tuomilehto-Wolf, E. (1999). The Finnish childhood type 1 diabetes registry group: record-high incidence of type 1 (insulin-dependent) diabetes mellitus in Finnish children. Diabetologia, 42, 655–660.CrossRefGoogle Scholar
  169. 169.
    Gyürüs, E., Györk, B., Green, A., Patterson, C., & Soltész, G. (1999). Incidence of type 1 childhood diabetes in Hungary (1978-1997). Hungarian committee on the epidemiology of childhood diabetes. Orvosi Hetilap, 140(20), 1107–1111.Google Scholar
  170. 170.
    Gyürüs, E., Patterson, C., & Soltész, G. (2011). Constantly rising or peaks and plateaus? Incidence of childhood type 1 diabetes in Hungary (1989-2009). Orvosi Hetilap, 152(42), 1692–1697.CrossRefGoogle Scholar
  171. 171.
    Martorell, R. (2005). Diabetes and Mexicans: why the two are linked. Preventing Chronic Disease, 2, A04.Google Scholar
  172. 172.
    Li, G., Zhang, P., Wang, J., Gregg, E. W., Yang, W., Gong, Q., Li, H., Li, H., Jiang, Y., An, Y., Shuai, Y., Zhang, B., Zhang, J., Thompson, T. J., Gerzoff, R. B., Roglic, G., Hu, Y., & Bennett, P. H. (2008). The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. The Lancet, 371(9626), 1783–1789.CrossRefGoogle Scholar
  173. 173.
    Xu, Y., Wang, L., He, J., Bi, Y., Li, M., Wang, T., Wang, L., Jiang, Y., Dai, M., Lu, J., Xu, M., Li, Y., Hu, N., Li, J., Mi, S., Chen, C. S., Li, G., Mu, Y., Zhao, J., Kong, L., Chen, J., Lai, S., Wang, W., Zhao, W., Ning, G., et al. (2013). Prevalence and control of diabetes in Chinese adults. JAMA, 310(9), 948–959.CrossRefGoogle Scholar
  174. 174.
    Neville, S. E., Boye, K. S., Montgomery, W. S., Iwamoto, K., Okamura, M., & Hayes, R. P. (2009). Diabetes in Japan: a review of disease burden and approaches to treatment. Diabetes/Metabolism Research and Reviews, 25(8), 705–716.CrossRefGoogle Scholar
  175. 175.
    Herder, C., & Roden, M. (2011). Genetics of type 2 diabetes: Pathophysiologic and clinical relevance. European Journal of Clinical Investigation, 41(6), 679–692.CrossRefGoogle Scholar
  176. 176.
    Silander, K., Mohlke, K. L., Scott, L. J., Peck, E. C., Hollstein, P., Skol, A. D., Jackson, A. U., Deloukas, P., Hunt, S., Stavrides, G., Chines, P. S., Erdos, M. R., Narisu, N., Conneely, K. N., Li, C., Fingerlin, T. E., Dhanjal, S. K., Valle, T. T., Bergman, R. N., Tuomilehto, J., Watanabe, R. M., Boehnke, M., & Collins, F. S. (2004). Genetic variation near the hepatocyte nuclear factor-4 alpha gene predicts susceptibility to type 2 diabetes. Diabetes, 53, 1141–1149.CrossRefGoogle Scholar
  177. 177.
    Odom, D. T., Zizlsperger, N., Gordon, D. B., Bell, G. W., Rinaldi, N. J., Murray, H. L., Volkert, T. L., Schreiber, J., Rolfe, P. A., Gifford, D. K., Fraenkel, E., Bell, G. I., & Young, R. A. (2004). Control of pancreas and liver gene expression by HNF transcription factors. Science, 303, 1378–1381.CrossRefGoogle Scholar
  178. 178.
    Kulkarni, R. N., & Kahn, C. R. (2004). HNFs-linking the liver and pancreatic islets in diabetes. Science, 303, 1311–1312.CrossRefGoogle Scholar
  179. 179.
    Pontiroli, A. E., Monti, L. D., Pizzini, A., & Piatti, P. (2000). Familial clustering of arterial blood pressure, HDL choles- terol, and pro-insulin but not of insulin resistance and microalbuminuria in siblings of patients with type 2 diabetes. Diabetes Care, 23(9), 1359–1364.CrossRefGoogle Scholar
  180. 180.
    Stratton, M. R., & Rahma, N. (2008). The emerging landscape of breast cancer susceptibility. Nature Genetics, 40, 17–22.CrossRefGoogle Scholar
  181. 181.
    Peto, J., & Thomas, M. M. (2000). High constant incidence in twins and other relatives of women with breast cancer. Nature Genetics, 26, 411–414.CrossRefGoogle Scholar
  182. 182.
    Association AP. (2013). Diagnostic and statistical manual of mental disorders, 5th edition: DSM-5. Arlington, VA: American Psychiatric Publishing.CrossRefGoogle Scholar
  183. 183.
    Christensen, D. L., Baio, J., Braun, K. V., et al. (2016). Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveillance Summaries, 65(3), 1–23.CrossRefGoogle Scholar
  184. 184.
    Buescher, A. V. S., Cidav, Z., Knapp, M., & Mandell, D. S. (2014). Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatrics, 168(8), 721–728.CrossRefGoogle Scholar
  185. 185.
    Nassar, N., Dixon, G., Bourke, J., Bower, C., Glasson, E., de Klerk, N., & Leonard, H. (2009). Autism spectrum disorders in young children: effect of changes in diagnostic practices. International Journal of Epidemiology, 38(5), 1245–1254.CrossRefGoogle Scholar
  186. 186.
    Parner, E. T., Schendel, D. E., & Thorsen, P. (2008). Autism prevalence trends over time in Denmark. Archives of Pediatrics & Adolescent Medicine, 162(12), 1150–1156.CrossRefGoogle Scholar
  187. 187.
    Kanner, L. (1943). Autistic disturbances of affective contact. The Nervous Child, 2, 217–250.Google Scholar
  188. 188.
    Kanner, L. (1949). Problems of nosology and psychodynamics in early childhood autism. The American Journal of Orthopsychiatry, 19(3), 416–426.CrossRefGoogle Scholar
  189. 189.
    Piven, J., Palmer, P., Jacobi, D., Childress, D., & Arndt, S. (1997). Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. The American Journal of Psychiatry, 154(2), 185–190.CrossRefGoogle Scholar
  190. 190.
    Hallmayer, J., Glasson, E. J., Bower, C., Petterson, B., Croen, L., Grether, J., & Risch, N. (2002). On the twin risk in autism. American Journal of Human Genetics, 4(71), 941–946.CrossRefGoogle Scholar
  191. 191.
    Uddin, M., Tammimies, K., Pellecchia, G., Alipanahi, B., Hu, P., Wang, Z., Pinto, D., Lau, L., Nalpathamkalam, T., Marshall, C. R., Blencowe, B. J., Frey, B. J., Merico, D., Yuen, R. K., & Scherer, S. W. (2014). Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder. Nature Genetics, 46(7), 742–747.CrossRefGoogle Scholar
  192. 192.
    O’Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., Levy, R., Ko, A., Lee, C., Smith, J. D., Turner, E. H., Stanaway, I. B., Vernot, B., Malig, M., Baker, C., Reilly, B., Akey, J. M., Borenstein, E., Rieder, M. J., Nickerson, D. A., Bernier, R., Shendure, J., & Eichler, E. E. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485(7397), 246–250.CrossRefGoogle Scholar
  193. 193.
    Neale, B. M., Kou, Y., Liu, L., Máayan, A., Samocha, K. E., Sabo, A., Lin, C. F., Stevens, C., Wang, L. S., Makarov, V., Polak, P., Yoon, S., Maguire, J., Crawford, E. L., Campbell, N. G., Geller, E. T., Valladares, O., Schafer, C., Liu, H., Zhao, T., Cai, G., Lihm, J., Dannenfelser, R., Jabado, O., Peralta, Z., Nagaswamy, U., Muzny, D., Reid, J. G., Newsham, I., Wu, Y., Lewis, L., Han, Y., Voight, B. F., Lim, E., Rossin, E., Kirby, A., Flannick, J., Fromer, M., Shakir, K., Fennell, T., Garimella, K., Banks, E., Poplin, R., Gabriel, S., DePristo, M., Wimbish, J. R., Boone, B. E., Levy, S. E., Betancur, C., Sunyaev, S., Boerwinkle, E., Buxbaum, J. D., Cook, E. H., Devlin, B., Gibbs, R. A., Roeder, K., Schellenberg, G. D., Sutcliffe, J. S., & Daly, M. J. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485(7397), 242–245.CrossRefGoogle Scholar
  194. 194.
    Durkin, M. S., Maenner, M. J., Newschaffer, C. J., Lee, L. C., Cunniff, C. M., Daniels, J. L., Kirby, R. S., Leavitt, L., Miller, L., Zahorodny, W., & Schieve, L. A. (2008). Advanced parental age and the risk of autism spectrum disorder. American Journal of Epidemiology, 168(11), 1268–1276.CrossRefGoogle Scholar
  195. 195.
    Hultman, C. M., Sandin, S., Levine, S. Z., Lichtenstein, P., & Reichenberg, A. (2010). Advancing paternal age and risk of autism: New evidence from a population-based study and a meta-analysis of epidemiological studies. Molecular Psychiatry, 16, 1203–1212.CrossRefGoogle Scholar
  196. 196.
    Sandin, S., Schendel, D., Magnusson, P., et al. (2016). CH: Autism risk associated with parental age and with increasing difference in age between the parents. Molecular Psychiatry, 21, 693–700.CrossRefGoogle Scholar
  197. 197.
    Yuen, R. K. C., Thiruvahindrapuram, B., Merico, D., Walker, S., Tammimies, K., Hoang, N., Chrysler, C., et al. (2015). Whole-genome sequencing of quartet families with autism spectrum disorder. Nature Medicine, 21(2), 185–191.CrossRefGoogle Scholar
  198. 198.
    Yuen RKC, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B, Patel RV, Whitney J, Deflaux N, Bingham J, Wang Z, Pellecchia G, et al (2017) Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nature Neuroscience.Google Scholar
  199. 199.
    Swert, L. F. D. (1999). Risk factors for allergy. European Journal of Pediatrics, 158(2), 89–94.CrossRefGoogle Scholar
  200. 200.
    Association of American Medical Colleges (2011). Recent studies and reports on physician shortages in the US. Tech. rep., Center for Workforce Studies Association of American Medical Colleges.Google Scholar
  201. 201.
    (2006) Forecasting allergy and immunology physician supply and demand through 2024. Tech. rep., The Center for Health Workforce Studies.Google Scholar
  202. 202.
    Holm, N. V. (1983). A note on ascertainment probability in the Allen/Hrubec twin model. Acta Geneticae Medicae et Gemellologiae, 32, 37–47.CrossRefGoogle Scholar
  203. 203.
    Gottfredson LS, Deary IJ (2004) Intelligence predicts health and longevity, but why? Curr Dir in Psyc Science. 13.Google Scholar
  204. 204.
    Deary, I. (2008). Why do intelligent people live longer? Nature, 456(13), 175–176.CrossRefGoogle Scholar
  205. 205.
    Deary, I. J., Whiteman, M. C., Starr, J. M., Whalley, L. J., & Fox, H. C. (2004). The impact of childhood intelligence on later life: following up the Scottish mental surveys of 1932 and 1947. Journal of Personality and Social Psychology, 86, 130–147.CrossRefGoogle Scholar
  206. 206.
    McGue, M., Vaupel, J. W., Holm, N., & Harvald, B. (1993). Longevity is moderately heritable in a sample of Danish twins born 1870-1880. Journal of Gerontology, 48(6), B237–B244.CrossRefGoogle Scholar
  207. 207.
    Bouchard, T., Lykken, D., McGue, M., Segal, N., & Tellegen, A. (1990). Sources of human psychological differences: the Minnesota study of twins reared apart. Science, 250(4978), 223–228.CrossRefGoogle Scholar
  208. 208.
    Plomin, R., Pedersen, N. L., Lichtenstein, P., & McClearn, G. E. (1994). Variability and stability in cognitive abilities are largely genetic later in life. Behavior Genetics, 24(3), 207–215.CrossRefGoogle Scholar
  209. 209.
    Ulric, N., Gwyneth, B., Jr, T. J. B., Boykin, A. W., Brody, N., Ceci, S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J., & Urbina, S. (1996). Intelligence: knowns and unknowns. American Psychologist, 51(2), 77–101.CrossRefGoogle Scholar
  210. 210.
    Bouchard, T. J. (2013). The Wilson effect: the increase in heritability of IQ with age. Twin Research and Human Genetics, 16(5), 923–930.MathSciNetCrossRefGoogle Scholar
  211. 211.
    Murray, C. A., Herrnstein, R. (1994). The bell curve: intelligence and class structure in American life, Free Press chap. 4:105–110.Google Scholar
  212. 212.
    Neisser, U. (1996). Intelligence: knowns and unknowns. American Psychologist, 51(2), 77–101.CrossRefGoogle Scholar
  213. 213.
    Gottfredson, L. S. (1998). The general intelligence factor. Scientific American Presents, 9(4), 24–29.Google Scholar
  214. 214.
    Schmidt, F. L., & Hunter, J. E. (1998). The validity and utility of selection methods in personnel psychology: practical and theoretical implications of 85 years of research findings. Psychological Bulletin, 124(2), 262–274.CrossRefGoogle Scholar
  215. 215.
    Burhana, N. A. S., Mohamadb, M. R., Kurniawana, Y., & Halim, A. (2014). The impact of low, average, and high IQ on economic growth and technological progress: do all individuals contribute equally? Intelligence, 46, 1–8.CrossRefGoogle Scholar
  216. 216.
    Bouchard, T. J. (2004). Genetic influence on human psychological traits. a survey. Current Directions in Psy- chological Science, 13(4), 148–151.CrossRefGoogle Scholar
  217. 217.
    Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., Ke, X., Hellard, S. L., Christoforou, A., Luciano, M., McGhee, K., Lopez, L., Gow, A. J., Corley, J., Redmond, P., Fox, H. C., Haggarty, P., Whalley, L. J., McNeill, G., God-dard, M. E., Espeseth, T., Lundervold, A. J., Reinvang, I., Pickles, A., Steen, V. M., Ollier, W., Porteous, D. J., Horan, M., Starr, J. M., Pendleton, N., Visscher, P. M., & Deary, I. J. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16, 996–1005.CrossRefGoogle Scholar
  218. 218.
    Rietveld, C. A., Esko, T., Davies, G., Pers, T. H., et al. (2014). Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. PNAS, 111(38), 13790–13794.CrossRefGoogle Scholar
  219. 219.
    Selzam, S., Krapohl, E., von Stumm, S., O’Reilly, P. F., Rimfeld, K., Kovas, Y., Dale, P. S., Lee, J. J., & Plomin, R. (2017). Predicting educational achievement from DNA. Molecular Psychiatry, 22, 267–272.CrossRefGoogle Scholar
  220. 220.
    Van Court, M., & Bean, F. (1985). Intelligence and fertility in the United States: 1912 to 1982. Intelligence, 9, 23–32.CrossRefGoogle Scholar
  221. 221.
    Lynn, R., & Van Court, M. (2004). New evidence of dysgenic fertility for intelligence in the United States. Intelligence, 32, 193–201.CrossRefGoogle Scholar
  222. 222.
    Meisenberg, G. (2010). The reproduction of intelligence. Intelligence, 38, 220–230.CrossRefGoogle Scholar
  223. 223.
    Dutton, E., van der Linden, D., & Lynn, R. (2016). The negative Flynn effect: a systematic literature review. Intelligence, 59, 163–169.CrossRefGoogle Scholar
  224. 224.
    Eysenck, H. J. (1979) The structure and measurement of intelligence. Transaction Publishers chap. 4.Google Scholar
  225. 225.
    Kell, H. J., Lubinski, D., & Benbow, C. P. (2013). Who rises to the top? Early indicators. Psychological Science, 24(5), 648–659.CrossRefGoogle Scholar
  226. 226.
    Anderson, D. K., Liang, J. W., & Lord, C. (2014). Predicting young adult outcome among more and less cognitively able individuals with autism spectrum disorders. Journal of Child Psychology and Psychiatry, 55(5), 485–494.CrossRefGoogle Scholar
  227. 227.
    Dilworth, C. (2011). Too smart for our own good: the ecological predicament of humankind. Cambridge University Press chap. 4. p 136.Google Scholar
  228. 228.
    The Ethics Committee of the American Society of Reproductive Medicine (ASRM). (2004). Embryo splitting for infertility treatment. Fertility and Sterility, 82, 256–257.Google Scholar
  229. 229.
    Prainsack, B., Hashiloni-Dolev, Y., Kasher, A., & Prainsack, J. (2010). Attitudes of social science students in Israel and Austria towards the belated twins scenario—an exploratory study. Public Understanding of Science, 19(4), 435–451.CrossRefGoogle Scholar
  230. 230.
    Wood, E. C., & Trounson, A. (2000). Uses of embryo duplication in humans: embryology and ethics. Human Reproduction, 15(3), 497–501.CrossRefGoogle Scholar
  231. 231.
    Harris, J. (1997). Goodbye Dolly? The ethics of human cloning. Journal of Medical Ethics, 23, 353–360.CrossRefGoogle Scholar
  232. 232.
    Kendler, K. S., Pedersen, N. L., Farahmand, B. Y., & Persson, P. G. (1996). The treated incidence of psychotic and affective illness in twins compared with population expectation: a study in the Swedish twin and psychiatric registries. Psychological Medicine, 26(6), 1135–1144.CrossRefGoogle Scholar
  233. 233.
    Rutter, M., & Redshaw, J. (1991). Growing up as a twin: twin-singleton differences in psychological develop- ment. Journal of Child Psychology and Psychiatry, 32(6), 885–895.CrossRefGoogle Scholar
  234. 234.
    Bryan, E. M. (1998). A spare or an individual? Cloning and the implications of monozygotic twinning. Human Reproduction Update, 4(6), 812–815.MathSciNetCrossRefGoogle Scholar
  235. 235.
    Dancause, K. N., Yevtushok, L., Lapchenko, S., Shumlyansky, I., Shevchenko, G., Wertelecki, W., & Garruto, R. M. (2010). Chronic radiation exposure in the Rivne-Polissia region of Ukraine: implications for birth defects. American Journal of Human Biology, 22(5), 667–674.CrossRefGoogle Scholar
  236. 236.
    Hook, E. B. (1981). Rates of chromosomal abnormalities at different maternal ages. Obstetrics and Gynecology, 58(3), 282–285.Google Scholar
  237. 237.
    Hook, E. B., Cross, P. K., & Schreinemachers, D. M. (1983). Chromosomal abnormality rates at amniocentesis and in live-born infants. JAMA, 249(15), 2034–2038.CrossRefGoogle Scholar
  238. 238.
    Chiang, T., Schultz, R. M., & Lampson, M. A. (2012). Meiotic origins of maternal age-related aneuploidy. Biology of Reproduction, 86, 1–7.CrossRefGoogle Scholar
  239. 239.
    Sun, J. X., Helgason, A., Masson, G., Ebenesersdóttir, S. S., Li, H., Mallick, S., Gnerre, S., Patterson, N., Kong, A., Reich, D., & Stefansson, K. (2012). A direct characterization of human mutation based on microsatellites. Nature Genetics, 44(10), 1161–1165.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Genetics Core, ARL Division of BiotechnologyUniversity of ArizonaTucsonUSA
  2. 2.Faculté de Médecine VétérinaireUniversité de MontréalSaint-HyacintheCanada

Personalised recommendations