Preventing Common Hereditary Disorders through Time-Separated Twinning
- 12 Downloads
Abstract
Biomedical advances have led to a relaxation of natural selection in the human population of developed countries. In the absence of strong purifying selection, spontaneous and frequently deleterious mutations tend to accumulate in the human genome and gradually increase the genetic load; that is, the frequency of potentially lethal genes in the gene pool. Gradual increase in incidence of many complex disorders suggests deleterious impact of the genetic load on human well-being. Recent advances in in vitro fertilization (IVF) combined with artificial twinning and transgenerational embryo cryoconservation offer the possibility of preventing significant accumulation of genetic load and reducing the incidence of hereditary disorders. Many complex diseases such as type 1 and 2 diabetes, autism, bipolar disorder, allergies, Alzheimer’s disease, and some cancers show significantly higher concordance in monozygotic (MZ) twins than in fraternal twins (dizygotic, DZ) or parent-child pairs, suggesting their etiology is strongly influenced by genetics. Preventing these diseases based on genetic data alone is frequently impossible due to the complex interplay between genetic and environmental factors. We hypothesize that the incidence of complex diseases could be significantly reduced in the future through a strategy based on time-separated twinning. This strategy involves the collection and fertilization of human oocytes followed by several rounds of artificial twinning. If preimplantation genetic screening (PGS) reports no aneuploidy or known Mendelian disorders, one of the MZ siblings would be implanted and the remaining embryos cryoconserved. Once the good health of the adult MZ sibling(s) is established, subsequent parenthood with the cryoconserved co-twins could substantially lower the incidence of hereditary disorders with complex etiology and virtually eradicate simple Mendelian disorders. The proposed method of artificial twinning has the potential to alleviate suffering and reduce the negative social impact induced by dysgenic effects associated with known and unknown genetic factors. Time-separated twinning has the capacity to prevent further accumulation of the genetic load and to provide source of isogenic embryonic stem cells for future regenerative therapies.
Keywords
Artificial twinning In vitro fertilization Complex diseases Prevention Preimplantation genetic screeningNotes
Acknowledgements
Special thanks to all the colleagues from the Beijing Institute of Genomics (BIG) for helpful discussions that substantially improved the quality of this work.
Authors’ Contributions
AC conceived the study, performed the statistical analysis, and wrote the manuscript. LA coordinated the study, participated in the study design, and helped to draft and edit the manuscript. All authors read and approved the final manuscript.
References
- 1.Crow, J. F. (2000). The origins, patterns and implications of human spontaneous mutation. Nature Reviews Genetics, 1, 40–47.CrossRefGoogle Scholar
- 2.Stephan, C. N., & Henneberg, M. (2001). Medicine may be reducing the human capacity to survive. Medical Hypotheses, 57(5), 633–637.CrossRefGoogle Scholar
- 3.Lynch, M. (2010). Rate, molecular spectrum, and consequences of human mutation. PNAS, 107(3), 961–968.CrossRefGoogle Scholar
- 4.Muller, H. J. (1950). Our load of mutations. American Journal of Human Genetics, 2, 111–176.Google Scholar
- 5.Dilworth C. (2009). Too smart for our own good: the ecological predicament of humankind, Cambridge University Press chap. 4:136.Google Scholar
- 6.Sawyer, S. A., Parsch, J., Zhang, Z., & Hartl, D. L. (2007). Prevalence of positive selection among nearly neutral amino acid replacements in drosophila. Proceedings of the National Academy of Sciences of the United States of America, 104(16), 6504–6510.CrossRefGoogle Scholar
- 7.Roach, J. C., Glusman, G., Smit, A. F. A., Huff, C. D., Hubley, R., Shannon, P. T., Rowen, L., Pant, K. P., Goodman, N., Bamshad, M., Shendure, J., Drmanac, R., Jorde, L. B., Hood, L., & Galas, D. J. (2010). Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328(5978), 636–639.CrossRefGoogle Scholar
- 8.Nachman, M. W., & Crowell, S. L. (2000). Estimate of the mutation rate per nucleotide in humans. Genetics, 156, 297–304.Google Scholar
- 9.Eyre-Walker, A., & Keightley, P. D. (1999). High genomic deleterious mutation rates in hominids. Nature, 397, 344–347.CrossRefGoogle Scholar
- 10.Eory, L., Halligan, D. L., & Keightley, P. D. (2010). Distributions of selectively constrained sites and deleterious mutation rates in the hominid and murid genomes. Molecular Biology and Evolution, 27, 177–192.CrossRefGoogle Scholar
- 11.MacArthur, D. G., Balasubramanian, S., Frankish, A., Huang, N., Morris, J., Walter, K., Jostins, L., Habegger, L., Pickrell, J. K., Montgomery, S. B., Albers, C. A., Zhang, Z. D., Conrad, D. F., Lunter, G., Zheng, H., Ayub, Q., DePristo, M. A., Banks, E., Hu, M., Handsaker, R. E., Rosenfeld, J. A., Fromer, M., Jin, M., Mu, X. J., Khurana, E., Ye, K., Kay, M., Saunders, G. I., Suner, M. M., Hunt, T., IHA, B., Amid, C., Carvalho-Silva, D. R., Bignell, A. H., Snow, C., Yngvadottir, B., Bumpstead, S., Cooper, D. N., Xue, Y., Romero, I. G., Consortium, G. P., Wang, J., Li, Y., Gibbs, R. A., McCarroll, S. A., Dermitzakis, E. T., Pritchard, J. K., Barrett, J. C., Harrow, J., Hurles, M. E., Gerstein, M. B., & Tyler-Smith, C. (2012). A systematic survey of loss-of-function variants in human protein-coding genes. Science, 335(6070), 823–828.CrossRefGoogle Scholar
- 12.(WHOSIS) WSIS (2009). World Health Statistics [http://www.who.int/whosis/whostat/2009/en/index.html].
- 13.Darwin, C. (1871). The descent of man, and selection in relation to sex. London: Murray.CrossRefGoogle Scholar
- 14.Glad, J. (2008). Future human evolution: eugenics in the twenty-first century. Hermitage Publishers. [Available at: http://whatwemaybe.org/].
- 15.Kevles, D.J. (1985). In the name of eugenics: genetics and the uses of human heredity. University of California Press, Berkeley and Los Angeles. [Available at: http://books.google.com.hk/books/about/Inthenameofeugenics.html?id=8esnhRxBomMC].
- 16.Chiu, R. W., Akolekar, R., Zheng, Y. W., Leung, T. Y., Sun, H., Chan, K. C., Lun, F. M., Go, A. T., Lau, E. T., To, W. W., Leung, W. C., Tang, R. Y., Au-Yeung, S. K., Lam, H., Kung, Y. Y., Zhang, X., van Vugt, J. M., Minekawa, R., Tang, M. H., Wang, J., Oudejans, C. B., Lau, T. K., Nicolaides, K. H., & Lo, Y. M. (2011). Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ, 342, c7401.CrossRefGoogle Scholar
- 17.Bell, C. J., Dinwiddie, D. L., Miller, N. A., Hateley, S. L., Ganusova, E. E., Mudge, J., Langley, R. J., Zhang, L., Lee, C. C., Schilkey, F. D., Sheth, V., Woodward, J. E., Peckham, H. E., Schroth, G. P., Kim, R. W., & Kingsmore, S. F. (2011). Carrier testing for severe childhood recessive diseases by next-generation sequencing. Science Translational Medicine, 3(65), 65ra4.CrossRefGoogle Scholar
- 18.Lieber, D. S., Vafai, S. B., Horton, L. C., Slate, N. G., Liu, S., Borowsky, M. L., Calvo, S. E., Schmahmann, J. D., & Mootha, V. K. (2012). Atypical case of Wolfram syndrome revealed through targeted exome sequencing in a patient with suspected mitochondrial disease. BMC Medical Genetics, 13(3).Google Scholar
- 19.Craven, L., Tuppen, H. A., Greggains, G. D., Harbottle, S. J., Murphy, J. L., Cree, L. M., Murdoch, A. P., Chinnery, P. F., Taylor, R. W., Lightowlers, R. N., Herbert, M., & Turnbull, D. M. (2010). Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature, 465, 82–85.CrossRefGoogle Scholar
- 20.Illmensee, K., Levanduski, M., Vidali, A., Husami, N., & Goudas, V. T. (2010). Human embryo twinning with applications in reproductive medicine. Fertility and Sterility, 93(2), 423–427.CrossRefGoogle Scholar
- 21.Trounson, A., & Mohr, L. (1983). Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature, 305, 707–709.CrossRefGoogle Scholar
- 22.van Dongen, J., Slagboom, P. E., Draisma, H. H. M., Martin, N. G., & Boomsma, D. I. (2012). The continuing value of twin studies in the omics era. Nature Reviews Genetics, 13(9), 640–653.CrossRefGoogle Scholar
- 23.Redondo, M. J., Yu, L., Hawa, M., Mackenzie, T., Pyke, D. A., Eisenbarth, G. S., & Leslie, R. D. G. (2001). Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia, 44, 354–362.CrossRefGoogle Scholar
- 24.Kumar, D., Gemayel, N. S., Deapen, D., Kapadia, D., Yamashita, P. H., Lee, M., Dwyer, J. H., Roy-Burman, P., Bray, G. A., & Mack, T. M. (1993). North-American twins with IDDM: genetic, etiological and clinical significance of disease concordance according age, zygosity, and the interval after diagnosis in first twin. Diabetes, 42, 1351–1363.CrossRefGoogle Scholar
- 25.Olmos, P., A’Hern, R., Heaton, D. A., Millward, B. A., Risley, D., Pyke, D. A., & Leslie, R. D. (1988). The significance of the concor- dance rate for type 1 (insulin-dependent) diabetes in identical twins. Diabetologia, 31, 747–750.CrossRefGoogle Scholar
- 26.Hyttinen, V., Kaprio, J., Kinnunen, L., Koskenvuo, M., & Tuomilehto, J. (2003). Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs. A nationwide follow-up study. Diabetes, 52, 1052–1055.CrossRefGoogle Scholar
- 27.Kyvik, K. O., Green, A., & Beck-Nielsen, H. (1995). Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ, 311(7010), 913–917.CrossRefGoogle Scholar
- 28.Metcalfe, K. A., Hitman, G. A., Rowe, R. E., Hawa, M., Huang, X., Stewart, T., & Leslie, D. G. (2001). Concordance for type 1 diabetes in identical twins is affected by insulin genotype. Diabetes Care, 24, 838–842.CrossRefGoogle Scholar
- 29.Newman, B., Selby, J. V., King, M. C., Slemenda, C., Fabsitz, R., & Friedman, G. D. (1987). Concordance for type 2 (non- insulin-dependent) diabetes mellitus in male twins. Diabetologia, 30(10), 763–768.CrossRefGoogle Scholar
- 30.Gerich, J. E. (1998). The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocrine Reviews, 19(4), 491–450.CrossRefGoogle Scholar
- 31.Committee on Diabetic Twins, Japan Diabetes Society. (1988). Diabetes mellitus in twins: a cooperative study in Japan. Committee on Diabetic Twins, Japan Diabetes Society. Diabetes Research and Clinical Practice, 5(4), 271–280.CrossRefGoogle Scholar
- 32.Kaprio, J., Tuomilehto, J., Koskenvuo, M., Romanov, K., Reunanen, A., Eriksson, J., Stengård, J., & Kesäniemi, Y. A. (1992). Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia, 35(11), 1060–1067.CrossRefGoogle Scholar
- 33.Medici, F., Hawa, M., Ianari, A., Pyke, D. A., & Leslie, R. D. (1999). Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia, 42(2), 146–150.CrossRefGoogle Scholar
- 34.Berkovic, S. F., Howell, R. A., Hay, D. A., & Hopper, J. L. (1998). Epilepsies in twins: genetics of the major epilepsy syndromes. Annals of Neurology, 43(4), 435–445.CrossRefGoogle Scholar
- 35.Kjeldsen, M. J., Kyvik, K. O., Christensen, K., & Friis, M. L. (2001). Genetic and environmental factors in epilepsy: a population-based study of 11 900 Danish twin pairs. Epilepsy Research, 44, 167–178.CrossRefGoogle Scholar
- 36.Kjeldsen, M. J., Corey, L. A., Christensen, K., & Friis, M. L. (2003). Epileptic seizures and syndromes in twins: the importance of genetic factors. Epilepsy Research, 55(1–2), 137–146.CrossRefGoogle Scholar
- 37.Coreya, L. A., Pellock, J. M., Kjeldsend, M. J., & Nakken, K. O. (2011). Importance of genetic factors in the occurrence of epilepsy syndrome type: a twin study. Epilepsy Research, 97, 103–111.CrossRefGoogle Scholar
- 38.Eckhaus, J., Lawrence, K. M., Helbig, I., Bui, M., Vadlamudi, L., Hopper, J. L., Scheffer, I. E., & Berkovic, S. F. (2013). Genetics of febrile seizure subtypes and syndromes: a twin study. Epilepsy Research, 105(1–2), 103–109.CrossRefGoogle Scholar
- 39.Vadlamudi, L., Milne, R. L., Lawrence, K., Heron, S. E., Eckhaus, J., Keay, D., Connellan, M., Torn-Broers, Y., Howell, R. A., Mulley, J. C., Scheffer, I. E., Dibbens, L. M., Hopper, J. L., & Berkovic, S. F. (2014). Genetics of epilepsy. The testimony of twins in the molecular era. Neurology, 83(12), 1042–1048.CrossRefGoogle Scholar
- 40.Folstein, S. E., & Rutter, M. L. (1977). Infantile autism: a genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18, 297–321.CrossRefGoogle Scholar
- 41.Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I. C., Jakobsson, G., & Bohman, M. (1989). A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. Journal of Child Psychology and Psychiatry, 30(3), 405–416.CrossRefGoogle Scholar
- 42.Bailey, A., Couteur, A. L., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., & Rutter, M. (1995). Autism as a strongly genetic disorder: evidence from a British twin study. Psychological Medicine, 25, 63–77.CrossRefGoogle Scholar
- 43.Ronald, A., & Hoekstra, R. A. (2011). Autism spectrum disorders and autistic traits: a decade of new twin studies. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B(3), 255–274.CrossRefGoogle Scholar
- 44.Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., Miller, J., Fedele, A., Collins, J., Smith, K., Lotspeich, L., Croen, L. A., Ozonoff, S., Lajonchere, C., Grether, J. K., & Risch, N. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68(11), 1095–1102.CrossRefGoogle Scholar
- 45.Rosenberg, R. E., Law, J. K., Yenokyan, G., McGready, J., Kaufmann, W. E., & Law, P. A. (2009). Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Archives of Pediatrics and Adolescent Medicine, 163(10), 907–914.CrossRefGoogle Scholar
- 46.Ritvo, E. R., Freeman, B. J., Mason-Brothers, A., Mo, A., & Ritvo, A. M. (1985). Concordance for the syndrome of autism in 40 pairs of afflicted twins. The American Journal of Psychiatry, 142, 74–77.CrossRefGoogle Scholar
- 47.Bertelson, A., Harvald, B., & Hauge, M. (1977). A Danish twin study of manic-depressive disorder. The British Journal of Psychiatry, 130, 330–351.CrossRefGoogle Scholar
- 48.Kieseppä, T., Partonen, T., Haukka, J., Kaprio, J., & Lönnqvist, J. (2004). High concordance of bipolar I disorder in a nationwide sample of twins. The American Journal of Psychiatry, 161(10), 1814–1821.CrossRefGoogle Scholar
- 49.Sicherer, S. H., Furlong, T. J., Maes, H. H., Desnick, R. J., Sampson, H. A., & Gelb, B. D. (2000). Genetics of peanut allergy: a twin study. The Journal of Allergy and Clinical Immunology, 106(1/1), 53–56.CrossRefGoogle Scholar
- 50.Edfors-Lubs, M. L. (1971). Allergy in 7000 twin pairs. Acta Allergologica, 26(4), 249–285.CrossRefGoogle Scholar
- 51.Wüthrich, B., Baumann, E., Fries, R. A., & Schnyder, U. W. (1981). Total and specific IgE (RAST) in atopic twins. Clinical Allergy, 11, 147–154.CrossRefGoogle Scholar
- 52.David, P. S., Wong, H. J., & Spector, T. D. (2001). Concordance and interrelationship of atopic diseases and markers of allergic sensitization among adult female twins. The Journal of Allergy and Clinical Immunology, 108(6), 901–907.CrossRefGoogle Scholar
- 53.Koeppen-Schomerus, G., Stevenson, J., & Plomin, R. (2001). Genes and environment in asthma: a study of 4 year old twins. Archives of Disease in Childhood, 85(5), 398–400.CrossRefGoogle Scholar
- 54.Gatz, M., Reynolds, C. A., Fratiglioni, L., Johansson, B., Mortimer, J. A., Berg, S., Fiske, A., & Pedersen, N. L. (2006). Role of genes and environments for explaining Alzheimer disease. Archives of General Psychiatry, 63, 168–174.CrossRefGoogle Scholar
- 55.Lichtenstein, P., Holm, N. V., Verkasalo, P. K., Iliadou, A., Kaprio, J., Koskenvuo, M., Pukkala, E., Skytthe, A., & Hemminki, K. (2000). Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. New England Journal of Medicine, 343(2), 78–85.CrossRefGoogle Scholar
- 56.Karvonen, M., Pitkäniemi, J., & Tuomilehto, J. (1999). The onset age of type 1 diabetes in Finnish children has become younger. The Finnish Childhood Diabetes Registry Group. Diabetes Care, 22(7), 1066–1070.CrossRefGoogle Scholar
- 57.Wang, W., McGreevey, W. P., Fu, C., Zhan, S., Luan, R., Chen, W., & Xu, B. (2009). Type 2 diabetes mellitus in China: a preventable economic burden. The American Journal of Managed Care, 15(9), 593–601.Google Scholar
- 58.Rubio-Tapia, A., Kyle, R. A., Kaplan, E. L., Johnson, D. R., Page, W., Erdtmann, F., Brantner, T. L., Kim, W. R., Phelps, T. K., Lahr, B. D., Zinsmeister, A. R., Melton III, L., & Murray, J. A. (2009). Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology, 137, 88–93.CrossRefGoogle Scholar
- 59.Kogan, M. D., Blumberg, S. J., Schieve, L. A., Boyle, C. A., Perrin, J. M., Ghandour, R. M., Singh, G. K., Strickland, B. B., Tre-vathan, E., & van Dyck, P. C. (2009). Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics, 124(5), 1395–1403.CrossRefGoogle Scholar
- 60.Autism and Developmental Disabilities Monitoring Network Surveillance Year 2006 Principal Investigators; Centers for Disease Control and Prevention (CDC). (2009). Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, United States, 2006. MMWR Surveillance Summaries, 58(10), 1–20.Google Scholar
- 61.Allergist report. Tech. rep., The American College of Allergy, Asthma and Immunology 2008. [Available at: http://www.acaai.org/press/Documents/AllergistReport08Final.pdf].
- 62.Wang, J., Fan, H. C., Behr, B., & Quake, S. R. (2012). Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell, 150, 402–412.CrossRefGoogle Scholar
- 63.Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., Gudjonsson, S. A., Sigurdsson, A., Jonas-dottir, A., Jonasdottir, A., Wong, W. S. W., Sigurdsson, G., Walters, G. B., Steinberg, S., Helgason, H., Thorleifsson, G., Gudbjartsson, D. F., Helgason, A., Magnusson, O. T., Thorsteinsdottir, U., & Stefansson, K. (2012). Rate of de novo mutations and the importance of father’s age to disease risk. Nature, 488, 471–475.CrossRefGoogle Scholar
- 64.Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., Ercan-Sencicek, A. G., DiLullo, N. M., Parikshak, N. N., Stein, J. L., Walker, M. F., Ober, G. T., Teran, N. A., Song, Y., El-Fishawy, P., Murtha, R. C., Choi, M., Overton, J. D., Bjornson, R. D., Carriero, N. J., Meyer, K. A., Bilguvar, K., Mane, S. M., Sěstan, N., Lifton, R. P., Günel, M., Roeder, K., Geschwind, D. H., Devlin, B., & State, M. W. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485(7397), 237–241.CrossRefGoogle Scholar
- 65.Croen, L. A., Najjar, D. V., Fireman, B., & Grether, J. K. (2007). Maternal and paternal age and risk of autism spectrum disorders. Archives of Pediatrics & Adolescent Medicine, 161, 334–340.CrossRefGoogle Scholar
- 66.Malaspina, D. P. (2001). Paternal factors and schizophrenia risk: de novo mutations and imprinting. Schizophrenia Bulletin, 27, 379–393.CrossRefGoogle Scholar
- 67.Frans, E. M., Sandin, S., Reichenberg, A., Lichtenstein, P., Långström, N., & Hultman, C. M. (2008). Advancing paternal age and bipolar disorder. Archives of General Psychiatry, 65(9), 1034–1040.CrossRefGoogle Scholar
- 68.Menezes, P. R., Lewis, G., Rasmussen, F., Zammit, S., Sipos, A., Harrison, G. L., Tynelius, P., & Gunnell, D. (2010). Paternal and maternal ages at conception and risk of bipolar affective disorder in their offspring. Psychological Medicine, 40(3), 477–485.CrossRefGoogle Scholar
- 69.Zhu, J. L., Vestergaard, M., Madsen, K. M., & Olsen, J. (2008). Paternal age and mortality in children. European Journal of Epidemiology, 23(7), 443–447.CrossRefGoogle Scholar
- 70.Deciphering Developmental Disorders Study. (2017). Prevalence and architecture of de novo mutations in developmental disorders. Nature, 542(7642), 433–438.CrossRefGoogle Scholar
- 71.Harper, J. C., Coonen, E., Rycke, M. D., Harton, G., Moutou, C., Pehlivan, T., Traeger-Synodinos, J., Van Rij, M., & Goossens, V. (2010). ESHRE PGD consortium data collection X: cycles from January to December 2007 with pregnancy follow-up to October 2008. Human Reproduction, 25(11), 2685–2707.CrossRefGoogle Scholar
- 72.Tachibana, M., Sparman, M., Sritanaudomchai, H., Ma, H., Clepper, L., Woodward, J., Li, Y., Ramsey, C., Kolotushkina, O., & Mitalipov, S. (2009). Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature, 461(7262), 367–372.CrossRefGoogle Scholar
- 73.Chen S, Ge H, Wang X, Pan X, Yao X, Li X, et al (2013) Haplotype-assisted accurate non-invasive fetal whole genome recovery through maternal plasma sequencing. Genome Med. 5(2).Google Scholar
- 74.Kitzman, J. O., Snyder, M. W., Ventura, M., Lewis, A. P., et al. (2012). Noninvasive whole-genome sequencing of a human fetus. Science Translational Medicine, 4(137), 137ra76.CrossRefGoogle Scholar
- 75.Chitty, L. S., Mason, S., Barrett, A. N., McKay, F., Lench, N., Daley, R., & Jenkins, L. A. (2015). Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenatal Diagnosis, 35(7), 656–662.CrossRefGoogle Scholar
- 76.Srinivasan, B. S., Evans, E. A., Flannick, J., Patterson, A. S., Chang, C. C., Pham, T., Young, S., Kaushal, A., Lee, J., Jacobson, J. L., & Patrizio, P. (2010). A universal carrier test for the long tail of Mendelian disease. Reproductive Biomedicine Online, 21(4), 537–551.CrossRefGoogle Scholar
- 77.Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813.CrossRefGoogle Scholar
- 78.Edwards, J. L., Schrick, F. N., McCracken, M. D., van Amstel, S. R., Hopkins, F. M., Welborn, M. G., & Davies, C. J. (2003). Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. American Journal of Reproductive Immunology, 50, 113–123.CrossRefGoogle Scholar
- 79.Tsunoda, Y., & Kato, Y. (2002). Recent progress and problems in animal cloning. Differentiation, 69, 158–161.CrossRefGoogle Scholar
- 80.Mitalipov, S., & Wolf, D. (2009). Totipotency, pluripotency and nuclear reprogramming. Advances in Biochemical Engineering and Biotechnology, 114, 185–199.Google Scholar
- 81.Meng, L., Ely, J. J., Stouffer, R. L., & Wolf, D. P. (1997). Rhesus monkeys produced by nuclear transfer. Biology of Reproduction, 57, 454–459.CrossRefGoogle Scholar
- 82.Mitalipov, S. M., Yeoman, R. R., Nusser, K. D., & Wolf, D. P. (2002). Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biology of Reproduction, 66, 1367–1373.CrossRefGoogle Scholar
- 83.Wolf, D. P., Meng, L., Ouhibi, N., & Zelinski-Wooten, M. (1999). Nuclear transfer in rhesus monkeys: practical and basic implications. Biology of Reproduction, 60, 199–204.CrossRefGoogle Scholar
- 84.Simerly, C., Dominko, T., Navara, C., Payne, C., Capuano, S., Gosman, G., Chong, K., Takahashi, D., Chace, C., Compton, D., Hewitson, L., & Schatten, G. (2003). Molecular correlates of primate nuclear transfer failures. Science, 300(5617), 297.CrossRefGoogle Scholar
- 85.Mapletoft, R. J., & Hasler, J. F. (2005). Assisted reproductive technologies in cattle: a review. Revue Scientifique et Technique (International Office of Epizootics), 24, 393–403.Google Scholar
- 86.Evans, M. J., Gurer, C., Loike, J. D., Wilmut, I., Schnieke, A. E., & Schon, E. A. (1999). Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nature Genetics, 23, 90–93.CrossRefGoogle Scholar
- 87.Schramm RD, Paprocki AM (2004) Strategies for the production of genetically identical monkeys by embryo splitting. Reproductive Biology and Endocrinology. 2(38).Google Scholar
- 88.Dawson, L., Bateman-House, A. S., Mueller, A. D., Bok, H., Brock, D. W., Chakravarti, A., Greene, M., King, P. A., O’Brien, S. J., Sachs, D. H., Schill, K. E., Siegel, A., Solter, D., Suter, S. M., Verfaillie, C. M., Walters, L. B., Gearhart, J. D., & Faden, R. R. (2003). Safety issues in cell-based intervention trials. Fertility and Sterility, 80(5), 1077–1085.CrossRefGoogle Scholar
- 89.Ginis, I., & Rao, M. S. (2003). Toward cell replacement therapy: promises and caveats. Experimental Neurology, 184, 61–77.CrossRefGoogle Scholar
- 90.Taylor, C. J., Bolton, E. M., Pocock, S., Sharples, L. D., Pedersen, R. A., & Bradley, J. A. (2005). Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet, 366(9502), 2019–2025.CrossRefGoogle Scholar
- 91.Gurdon, J. B., & Colman, A. (1999). The future of cloning. Nature, 402, 743–746.CrossRefGoogle Scholar
- 92.Lanza, R. P., Cibelli, J. B., & West, M. D. (1999). Human therapeutic cloning. Nature Medicine, 5(9), 975–977.CrossRefGoogle Scholar
- 93.Stojkovic, M., Stojkovic, P., Leary, C., Hall, V. J., Armstrong, L., Herbert, M., Nesbitt, M., Lako, M., & Murdoch, A. (2005). Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reproductive Biomedicine Online, 11(2), 226–231.CrossRefGoogle Scholar
- 94.Pomerantz, J., & Blau, H. M. (2004). Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nature Cell Biology, 6(9), 810–816.CrossRefGoogle Scholar
- 95.Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.CrossRefGoogle Scholar
- 96.Zaehres, H., & Scholer, H. R. (2007). Induction of pluripotency: from mouse to human. Cell, 131(5), 834–835.CrossRefGoogle Scholar
- 97.Wilmut, I. (2007). The first direct reprogramming of adult human fibroblasts cell. Cell Stem Cell, 1(6), 593–594.CrossRefGoogle Scholar
- 98.Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., & Yamanaka, S. (2008). Generation of pluripo- tent stem cells from adult mouse liver and stomach cells. Science, 321(5889), 699–702.CrossRefGoogle Scholar
- 99.Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 260–262.CrossRefGoogle Scholar
- 100.Gutierrez-Aranda, I., Ramos-Mejia, V., Bueno, C., Munoz-Lopez, M., Real, P. J., Mácia, A., Sanchez, L., Ligero, G., Garcia-Parez, J. L., & Menendez, P. (2010). Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells, 28(9), 1568–1570.CrossRefGoogle Scholar
- 101.Knoepfler, P. S. (2009). Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells, 27(5), 1050–1056.CrossRefGoogle Scholar
- 102.Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., Hon, G., Antosiewicz-Bourget, J., O’Malley, R., Castanon, R., Klugman, S., Downes, M., Yu, R., Stewart, R., Ren, B., Thomson, J. A., Evans, R. M., & Ecker, J. R. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471(7336), 68–73.CrossRefGoogle Scholar
- 103.Haller, M. J., Viener, H. L., Wasserfall, C., Brusko, T., Atkinson, M. A., & Schatz, D. A. (2008). Autologous umbilical cord blood infusion for type 1 diabetes. Experimental Hematology, 36(6), 710–715.CrossRefGoogle Scholar
- 104.Harris, D. T., Badowski, M., Ahmad, N., & Gaballa, M. A. (2007). The potential of cord blood stem cells for use in regenerative medicine. Expert Opinion on Biological Therapy, 7(9), 1311–1322.CrossRefGoogle Scholar
- 105.Noli, L., Ogilvie, C., Khalaf, Y., & Ilic, D. (2017). Potential of human twin embryos generated by embryo splitting in assisted reproduction and research. Human Reproduction Update, 23(2), 156–165.Google Scholar
- 106.Lewis, I. M. (1994). Splitting cattle embryos commercially. The effect of sucrose, embryo stage and the duration between embryo recovery and bisection. Theriogenology, 41(237).Google Scholar
- 107.Hygate, L., Knee, B., Lewis, I. (1995) An embryo splitting program to improve carcass quality for the Japanese beef market. In The 11th conference of Australian Association of Animal Breeding and Genetics: Breeding for Quality and Profit. Australian Association of Animal Breeding and Genetics, Adelaide, South Australia.Google Scholar
- 108.Johnson, W. H., Loskutoff, N. M., Plante, Y., & Betteridge, K. J. (1995). Production of four identical calves by the separation of blastomeres from an in-vitro derived four-cell embryo. The Veterinary Record, 137, 15–16.CrossRefGoogle Scholar
- 109.Seike, N., Sakai, M., & Kanagawa, H. (1991). Development of frozen-thawed demiembryos and production of identical twin calves of different ages. The Journal of Veterinary Medical Science, 53, 37–42.CrossRefGoogle Scholar
- 110.Illmensee, K., Kaskar, K., & Zavos, P. M. (2005). Efficient blastomere biopsy for mouse embryo splitting for future applications in human assisted reproduction. Reproductive Biomedicine Online, 11(6), 716–725.CrossRefGoogle Scholar
- 111.Mitalipov, S. M., Yeoman, R. R., Kuo, H. C., & Wolf, D. P. (2002). Monozygotic twinning in rhesus monkeys by manipulation of in vitro-derived embryos. Biology of Reproduction, 66, 1449–1455.CrossRefGoogle Scholar
- 112.Wood, C. (2001). Embryo splitting: a role in infertility? Reproduction, Fertility and Development, 13, 91–93.CrossRefGoogle Scholar
- 113.Machin, G. A. (1996). Some causes of genotypic and phenotypic discordance in monozygotic twin pairs. American Journal of Medical Genetics, 61, 216–228.CrossRefGoogle Scholar
- 114.Noli, L., Capalbo, A., Ogilvie, C., Khalaf, Y., & Ilic, D. (2015). Discordant growth of monozygotic twins starts at the blastocyst stage: a case study. Stem Cell Reports, 5(6), 946–953.CrossRefGoogle Scholar
- 115.Bruder, C. E. G., Piotrowski, A., Gijsbers, A. A. C. J., Andersson, R., Erickson, S., de Ståhl, T. D., Menzel, U., Sandgren, J., von Tell, D., Poplawski, A., Crowley, M., Crasto, C., Partridge, E. C., Tiwari, H., Allison, D. B., Komorowski, J., van Ommen, G. J. B., Boomsma, D. I., Pedersen, N. L., den Dunnen, J. T., Wirdefeldt, K., & Dumanski, J. P. (2008). Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. The American Journal of Human Genetics, 82(3), 763–771.CrossRefGoogle Scholar
- 116.De, S. (2011). Somatic mosaicism in healthy human tissues. Trends in Genetics, 27, 217–223.CrossRefGoogle Scholar
- 117.Singh, S. M., Murphy, B., & O’Reilly, R. (2002). Epigenetic contributors to the discordance of monozygotic twins. Clinical Genetics, 62, 97–103.CrossRefGoogle Scholar
- 118.Illmensee, K., Levanduski, M., Konialis, C., Pangalos, C., Vithoulkas, A., & Goudas, V. T. (2011). Human embryo twinning with proof of monozygocity. Middle East Fertility Society Journal, 16, 215–219.CrossRefGoogle Scholar
- 119.Baranzini, S. E., Mudge, J., van Velkinburgh, J. C., Khankhanian, P., Khrebtukova, I., Miller, N. A., Zhang, L., Farmer, A. D., Bell, C. J., Kim, R. W., May, G. D., Woodward, J. E., Caillier, S. J., McElroy, J. P., Gomez, R., Pando, M. J., Clendenen, L. E., Ganusova, E. E., Schilkey, F. D., Ramaraj, T., Khan, O. A., Huntley, J. J., Luo, S., Kwok, P., Wu, T. D., Schroth, G. P., Oksenberg, J. R., Hauser, S. L., & Kingsmore, S. F. (2010). Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature, 464, 1351–1356.CrossRefGoogle Scholar
- 120.Weber-Lehmann, J., Schilling, E., Gradl, G., Richter, D. C., Wiehler, J., & Rolf, B. (2014). Finding the needle in the haystack: Differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Science International. Genetics, 9, 42–46.CrossRefGoogle Scholar
- 121.Krawczak, M., & Cooper, D. N. (2012). How to distinguish genetically between an alleged father and his monozygotic twin: a thought experiment. Forensic Science International. Genetics, 6, 129–130.CrossRefGoogle Scholar
- 122.Yeoman, Y. Y., Gerami-Naini, B., Mitalipov, S., Nusser, K. D., Widmann-Browning, A. A., & Wolf, D. P. (2001). Cryo-loop vitrification yields superior survival of rhesus monkey blastocysts. Human Reproduction, 16, 1965–1969.CrossRefGoogle Scholar
- 123.Loutradi, K. E., Kolibianakis, E. M., Venetis, C. A., Papanikolaou, E. G., Pados, G., Bontis, I., & Tarlatzis, B. C. (2008). Cryopreservation of human embryos by vitrification or slow freezing: a systematic review and meta-analysis. Fertility and Sterility, 90, 186–193.CrossRefGoogle Scholar
- 124.Rezazadeh, V. M., Eftekhari-Yazdi, P., Karimian, L., Hassani, F., & Movaghar, B. (2009). Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos. Journal of Assisted Reproduction and Genetics, 26(6), 347–354.CrossRefGoogle Scholar
- 125.Cobo, A., Meseguer, M., Remohí, J., & Pellicer, A. (2010). Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Human Reproduction, 25(9), 2239–2246.CrossRefGoogle Scholar
- 126.Cobo, A., & Diaz, C. (2011). Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertility and Sterility, 96(2), 277–285.CrossRefGoogle Scholar
- 127.Chan, A. W. S., Dominko, T., Luetjens, C. M., Neuber, E., Martinovich, C., Hewitson, L., Simerly, C. R., & Schatten, G. P. (2000). Clonal propagation of primate offspring by embryo splitting. Science, 287(5451), 317–319.CrossRefGoogle Scholar
- 128.Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.CrossRefGoogle Scholar
- 129.Amit, M., Carpenter, M. K., Inokuma, M. S., Chiu, C. P., Harris, C. P., Waknitz, M. A., Itskovitz-Eldor, J., & Thomson, J. A. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental Biology, 227(2), 271–278.CrossRefGoogle Scholar
- 130.Eiges, R., Schuldiner, M., Drukker, M., Yanuka, O., Itskovitz-Eldor, J., & Benvenisty, N. (2001). Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Current Biology, 11(7), 514–518.CrossRefGoogle Scholar
- 131.Odorico, J. S., Kaufman, D. S., & Thomson, J. A. (2001). Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 19(3), 193–204.CrossRefGoogle Scholar
- 132.Illmensee, K., Kaskar, K., & Zavos, P. (2006). In vitro blastocyst development from serially split mouse embryos and future implications for human ART. Fertility and Sterility, 86, 1112–1120.CrossRefGoogle Scholar
- 133.Bianchi, E., & Sette, C. (2011). Post-transcriptional control of gene expression in mouse early embryo development: a view from the tip of the iceberg. Genes, 2(2), 345–359.CrossRefGoogle Scholar
- 134.Edwards, R. G. (2006). Genetics, epigenetics and gene silencing in differentiating mammalian embryos. Reproductive Biomedicine Online, 13(5), 732–753.CrossRefGoogle Scholar
- 135.Stadler, M. B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Schöler, A., Wirbelauer, C., Oakeley, E. J., Gaidatzis, D., Tiwari, V. K., & Schübeler, D. (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480, 490–495.Google Scholar
- 136.Noli, L., Capalbo, A., Dajani, Y., Cimadomo, D., Bvumbe, J., Rienzi, L., Ubaldi, F. M., Ogilvie, C., Khalaf, Y., & Ilic, D. (2016). Human embryos created by embryo splitting secrete significantly lower levels of miRNA-30c. Stem Cells and Development, 25(24), 1853–1862.CrossRefGoogle Scholar
- 137.Noli, L., Dajani, Y., Capalbo, A., Bvumbe, J., Rienzi, L., Ubaldi, F. M., Ogilvie, C., Khalaf, Y., & Ilic, D. (2015). Developmental clock compromises human twin model created by embryo splitting. Human Reproduction, 30(12), 2774–2784.Google Scholar
- 138.Zhao, S., Zhao, X., Du, W., Hao, H., Liu, Y., Qin, T., Wang, D., & Zhu, H. (2015). Production of early monozygotic twin bovine embryos in vitro by the blastomere separation and coculture technique. Journal of Integrative Agriculture, 14(10), 2034–2041.CrossRefGoogle Scholar
- 139.Van de Velde, H., Cauffman, G., Tournaye, H., Devroey, P., & Liebaers, I. (2008). The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Human Reproduction, 23(8), 1742–1747.CrossRefGoogle Scholar
- 140.Geens, M., Mateizel, I., Sermon, K., De Rycke, M., Spits, C., Cauffman, G., Devroey, P., Tournaye, H., Liebaers, I., & Van de Velde, H. (2009). Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Human Reproduction, 24(11), 2709–2717.CrossRefGoogle Scholar
- 141.Illmenseea, K., Kaskar, K., & Zavosa, P. M. (2006). In-vitro developmental potential of individual mouse blastomeres cultured with and without zona pellucida: future implications for human assisted reproduction. Reproductive Biomedicine Online, 13(2), 284–294.CrossRefGoogle Scholar
- 142.Riggs, R., Mayer, J., Dowling-Lacey, D., Chi, T. F., Jones, E., & Oehninger, S. (2008). Does storage time influence postthaw survival and pregnancy outcome? An analysis of 11,768 cryopreserved human embryos. Fertility and Sterility, 93, 109–115.CrossRefGoogle Scholar
- 143.Yashina, S., Gubin, S., Maksimovich, S., Yashina, A., Gakhova, E., & Gilichinsky, D. (2012). Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. PNAS, 109(10), 4008–4013.CrossRefGoogle Scholar
- 144.Pikuta, E. V., Marsic, D., Bej, A., Tang, J., Krader, P., & Hoover, R. B. (2005). Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the fox tunnel in Alaska. International Journal of Systematic and Evolutionary Microbiology, 55, 473–478.CrossRefGoogle Scholar
- 145.Bidle, K. D., Lee, S., Marchant, D. R., & Falkowski, P. G. (2007). Fossil genes and microbes in the oldest ice on earth. PNAS, 104(33), 13455–13460.CrossRefGoogle Scholar
- 146.Stahl, E. A., Wegmann, D., Trynka, G., Gutierrez-Achury, J., Do, R., Voight, B. F., Kraft, P., Chen, R., Kallberg, H. J., Kurree-man, F. A. S., Replication, D. G., analysis Consortium M, Consortium MIG, Kathiresan, S., Wijmenga, C., Gregersen, P. K., Alfredsson, L., Siminovitch, K. A., Worthington, J., de Bakker, P. I. W., Raychaudhuri, S., & Plenge, R. M. (2012). Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nature Genetics, 44(5), 483–489.CrossRefGoogle Scholar
- 147.Roberts NJ, Vogelstein JT, Parmigiani G, Kinzler KW, Vogelstein B, Velculescu VE (2012) The predictive capacity of personal genome sequencing. Science Translational Medicine. Google Scholar
- 148.Chuong, B. D., Hinds, D. A., Francke, U., & Eriksson, N. (2012). Comparison of family history and SNPs for predicting risk of complex disease. PLoS Genetics, 8(10), e1002973.CrossRefGoogle Scholar
- 149.Rzhetsky, A., Wajngurt, D., Park, N., & Zheng, T. (2007). Probing genetic overlap among complex human phenotypes. PNAS, 104(28), 11694–11699.CrossRefGoogle Scholar
- 150.Thomsen, S. F., van der Sluis, S., Kyvik, K. O., Skytthe, A., & Backer, V. (2010). Estimates of asthma heritability in a large twin sample. Clinical and Experimental Allergy, 40, 1054–1061.CrossRefGoogle Scholar
- 151.Nisticò, L., Fagnani, C., Coto, I., Percopo, S., Cotichini, R., Limongelli, M. G., Paparo, F., D’Alfonso, S., Giordano, M., Sferlazzas, C., Magazzù, G., Momigliano-Richiardi, P., Greco, L., & Stazi, M. A. (2006). Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut, 55(6), 803–808.CrossRefGoogle Scholar
- 152.Rees, M. I. (2010). The genetics of epilepsy—the past, the present and future. Seizure, 19(10), 680–683.CrossRefGoogle Scholar
- 153.Fujiwara, T., Nakamura, H., Watanabe, M., Yagi, K., Seino, M., & Nakamura, H. (1990). Clinicoelectrographic concordance between monozygotic twins with severe myoclonic epilepsy in infancy. Epilepsia, 31(3), 281–286.CrossRefGoogle Scholar
- 154.Vadlamudi, L., Dibbens, L. M., Lawrence, K. M., Iona, X., et al. (2010). Timing of de novo mutagenesis—a twin study of Sodium-Channel mutations. The New England Journal of Medicine, 363, 1335–1340.CrossRefGoogle Scholar
- 155.Epi4K Consortium and Epilepsy Phenome/Genome Project. (2013). De novo mutations in epileptic encephalopathies. Nature, 501, 217–221.CrossRefGoogle Scholar
- 156.Kjeldsen, M. J., Kyvik, K. O., Friis, M. L., & Christensen, K. (2002). Genetic and environmental factors in febrile seizures: a Danish population-based twin study. Epilepsy Research, 51(1–2), 167–177.CrossRefGoogle Scholar
- 157.Knip, M., Veijola, R., Virtanen, S. M., Hyoty, H., Vaarala, O., & Åkerblom, H. K. (2005). Environmental triggers and determinants of type 1 diabetes. Diabetes, 54(Suppl 2), S125–S136.CrossRefGoogle Scholar
- 158.Couper, J. J. (2001). Environmental triggers of type 1 diabetes. Journal of Paediatrics and Child Health, 37(3), 218–220.MathSciNetCrossRefGoogle Scholar
- 159.Virtanen, S. M., Räsänen, L., Aro, A., Ylönen, K., Lounamaa, R., Tuomilehto, J., & Åkerblom, H. K. (1992). Feeding in infancy and the risk of type 1 diabetes mellitus in Finnish children: the childhood diabetes in Finland study group. Diabetic Medicine, 9, 815–819.CrossRefGoogle Scholar
- 160.Hyppönen, E., Läärä, E., Reunanen, A., Järvelin, M. R., & Virtanen, S. M. (2001). Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet, 3(358), 1500–1503.CrossRefGoogle Scholar
- 161.Ilonen, J., Sjöroos, M., Knip, M., Veijola, R., Simell, O., Åkerblom, H. K., Paschou, P., Bozas, E., Havarini, B., Malamitsi-Puchner, A., Thymelli, J., Vazeou, A., & Bartsocas, C. S. (2002). Estimation of genetic risk for type 1 diabetes. American Journal of Medical Genetics, 115, 30–36.CrossRefGoogle Scholar
- 162.Fennessy, M., Metcalfe, K., Hitman, G. A., Niven, M., Biro, P. A., Tuomilehto, J., & Tuomilehto-Wolf, E. (1994). A gene in the HLA class I region contributes to susceptibility to IDDM in the Finnish population. Childhood diabetes in Finland (DiMe) study group. Diabetologia, 37(9), 937–944.CrossRefGoogle Scholar
- 163.Wolf, E., Tuomilehto, J., & Lounamaa, R. (1988). Can the high risk of type I diabetes in Finland be explained by familial aggregation and by HLA haplotype distribution?: Study group on childhood diabetes in Finland. Advances in Experimental Medicine and Biology, 246, 235–239.CrossRefGoogle Scholar
- 164.Tuomilehto-Wolf, E., & Tuomilehto, J. (1991). HLA antigenes in insulin-dependent diabetes mellitus. Annals of Medicine, 23(5), 481–488.CrossRefGoogle Scholar
- 165.Gloyn, A. L., Cummings, E. A., Edghill, E. L., Harries, L. W., Scott, R., Costa, T., Temple, I. K., Hattersley, A. T., & Ellard, S. (2004). Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 gene encoding the Kir6.2 subunit of the beta-cell potassium adenosine triphosphate channel. Journal of Clinical Endocrinology and Metabolism, 89(8), 3932–3935.CrossRefGoogle Scholar
- 166.Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J (2000) Incidence of childhood type 1 diabetes worldwide. Diabetes Care. 23(10).Google Scholar
- 167.Gale, E. A. M. (2002). The rise of childhood type 1 diabetes in the 20th century. Diabetes, 51(12), 3353–3361.CrossRefGoogle Scholar
- 168.Tuomilehto, J., Karvonen, M., Pitkäniemi, J., Virtala, E., Kohtamäki, K., Toivanen, L., & Tuomilehto-Wolf, E. (1999). The Finnish childhood type 1 diabetes registry group: record-high incidence of type 1 (insulin-dependent) diabetes mellitus in Finnish children. Diabetologia, 42, 655–660.CrossRefGoogle Scholar
- 169.Gyürüs, E., Györk, B., Green, A., Patterson, C., & Soltész, G. (1999). Incidence of type 1 childhood diabetes in Hungary (1978-1997). Hungarian committee on the epidemiology of childhood diabetes. Orvosi Hetilap, 140(20), 1107–1111.Google Scholar
- 170.Gyürüs, E., Patterson, C., & Soltész, G. (2011). Constantly rising or peaks and plateaus? Incidence of childhood type 1 diabetes in Hungary (1989-2009). Orvosi Hetilap, 152(42), 1692–1697.CrossRefGoogle Scholar
- 171.Martorell, R. (2005). Diabetes and Mexicans: why the two are linked. Preventing Chronic Disease, 2, A04.Google Scholar
- 172.Li, G., Zhang, P., Wang, J., Gregg, E. W., Yang, W., Gong, Q., Li, H., Li, H., Jiang, Y., An, Y., Shuai, Y., Zhang, B., Zhang, J., Thompson, T. J., Gerzoff, R. B., Roglic, G., Hu, Y., & Bennett, P. H. (2008). The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. The Lancet, 371(9626), 1783–1789.CrossRefGoogle Scholar
- 173.Xu, Y., Wang, L., He, J., Bi, Y., Li, M., Wang, T., Wang, L., Jiang, Y., Dai, M., Lu, J., Xu, M., Li, Y., Hu, N., Li, J., Mi, S., Chen, C. S., Li, G., Mu, Y., Zhao, J., Kong, L., Chen, J., Lai, S., Wang, W., Zhao, W., Ning, G., et al. (2013). Prevalence and control of diabetes in Chinese adults. JAMA, 310(9), 948–959.CrossRefGoogle Scholar
- 174.Neville, S. E., Boye, K. S., Montgomery, W. S., Iwamoto, K., Okamura, M., & Hayes, R. P. (2009). Diabetes in Japan: a review of disease burden and approaches to treatment. Diabetes/Metabolism Research and Reviews, 25(8), 705–716.CrossRefGoogle Scholar
- 175.Herder, C., & Roden, M. (2011). Genetics of type 2 diabetes: Pathophysiologic and clinical relevance. European Journal of Clinical Investigation, 41(6), 679–692.CrossRefGoogle Scholar
- 176.Silander, K., Mohlke, K. L., Scott, L. J., Peck, E. C., Hollstein, P., Skol, A. D., Jackson, A. U., Deloukas, P., Hunt, S., Stavrides, G., Chines, P. S., Erdos, M. R., Narisu, N., Conneely, K. N., Li, C., Fingerlin, T. E., Dhanjal, S. K., Valle, T. T., Bergman, R. N., Tuomilehto, J., Watanabe, R. M., Boehnke, M., & Collins, F. S. (2004). Genetic variation near the hepatocyte nuclear factor-4 alpha gene predicts susceptibility to type 2 diabetes. Diabetes, 53, 1141–1149.CrossRefGoogle Scholar
- 177.Odom, D. T., Zizlsperger, N., Gordon, D. B., Bell, G. W., Rinaldi, N. J., Murray, H. L., Volkert, T. L., Schreiber, J., Rolfe, P. A., Gifford, D. K., Fraenkel, E., Bell, G. I., & Young, R. A. (2004). Control of pancreas and liver gene expression by HNF transcription factors. Science, 303, 1378–1381.CrossRefGoogle Scholar
- 178.Kulkarni, R. N., & Kahn, C. R. (2004). HNFs-linking the liver and pancreatic islets in diabetes. Science, 303, 1311–1312.CrossRefGoogle Scholar
- 179.Pontiroli, A. E., Monti, L. D., Pizzini, A., & Piatti, P. (2000). Familial clustering of arterial blood pressure, HDL choles- terol, and pro-insulin but not of insulin resistance and microalbuminuria in siblings of patients with type 2 diabetes. Diabetes Care, 23(9), 1359–1364.CrossRefGoogle Scholar
- 180.Stratton, M. R., & Rahma, N. (2008). The emerging landscape of breast cancer susceptibility. Nature Genetics, 40, 17–22.CrossRefGoogle Scholar
- 181.Peto, J., & Thomas, M. M. (2000). High constant incidence in twins and other relatives of women with breast cancer. Nature Genetics, 26, 411–414.CrossRefGoogle Scholar
- 182.Association AP. (2013). Diagnostic and statistical manual of mental disorders, 5th edition: DSM-5. Arlington, VA: American Psychiatric Publishing.CrossRefGoogle Scholar
- 183.Christensen, D. L., Baio, J., Braun, K. V., et al. (2016). Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveillance Summaries, 65(3), 1–23.CrossRefGoogle Scholar
- 184.Buescher, A. V. S., Cidav, Z., Knapp, M., & Mandell, D. S. (2014). Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatrics, 168(8), 721–728.CrossRefGoogle Scholar
- 185.Nassar, N., Dixon, G., Bourke, J., Bower, C., Glasson, E., de Klerk, N., & Leonard, H. (2009). Autism spectrum disorders in young children: effect of changes in diagnostic practices. International Journal of Epidemiology, 38(5), 1245–1254.CrossRefGoogle Scholar
- 186.Parner, E. T., Schendel, D. E., & Thorsen, P. (2008). Autism prevalence trends over time in Denmark. Archives of Pediatrics & Adolescent Medicine, 162(12), 1150–1156.CrossRefGoogle Scholar
- 187.Kanner, L. (1943). Autistic disturbances of affective contact. The Nervous Child, 2, 217–250.Google Scholar
- 188.Kanner, L. (1949). Problems of nosology and psychodynamics in early childhood autism. The American Journal of Orthopsychiatry, 19(3), 416–426.CrossRefGoogle Scholar
- 189.Piven, J., Palmer, P., Jacobi, D., Childress, D., & Arndt, S. (1997). Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. The American Journal of Psychiatry, 154(2), 185–190.CrossRefGoogle Scholar
- 190.Hallmayer, J., Glasson, E. J., Bower, C., Petterson, B., Croen, L., Grether, J., & Risch, N. (2002). On the twin risk in autism. American Journal of Human Genetics, 4(71), 941–946.CrossRefGoogle Scholar
- 191.Uddin, M., Tammimies, K., Pellecchia, G., Alipanahi, B., Hu, P., Wang, Z., Pinto, D., Lau, L., Nalpathamkalam, T., Marshall, C. R., Blencowe, B. J., Frey, B. J., Merico, D., Yuen, R. K., & Scherer, S. W. (2014). Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder. Nature Genetics, 46(7), 742–747.CrossRefGoogle Scholar
- 192.O’Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., Levy, R., Ko, A., Lee, C., Smith, J. D., Turner, E. H., Stanaway, I. B., Vernot, B., Malig, M., Baker, C., Reilly, B., Akey, J. M., Borenstein, E., Rieder, M. J., Nickerson, D. A., Bernier, R., Shendure, J., & Eichler, E. E. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485(7397), 246–250.CrossRefGoogle Scholar
- 193.Neale, B. M., Kou, Y., Liu, L., Máayan, A., Samocha, K. E., Sabo, A., Lin, C. F., Stevens, C., Wang, L. S., Makarov, V., Polak, P., Yoon, S., Maguire, J., Crawford, E. L., Campbell, N. G., Geller, E. T., Valladares, O., Schafer, C., Liu, H., Zhao, T., Cai, G., Lihm, J., Dannenfelser, R., Jabado, O., Peralta, Z., Nagaswamy, U., Muzny, D., Reid, J. G., Newsham, I., Wu, Y., Lewis, L., Han, Y., Voight, B. F., Lim, E., Rossin, E., Kirby, A., Flannick, J., Fromer, M., Shakir, K., Fennell, T., Garimella, K., Banks, E., Poplin, R., Gabriel, S., DePristo, M., Wimbish, J. R., Boone, B. E., Levy, S. E., Betancur, C., Sunyaev, S., Boerwinkle, E., Buxbaum, J. D., Cook, E. H., Devlin, B., Gibbs, R. A., Roeder, K., Schellenberg, G. D., Sutcliffe, J. S., & Daly, M. J. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485(7397), 242–245.CrossRefGoogle Scholar
- 194.Durkin, M. S., Maenner, M. J., Newschaffer, C. J., Lee, L. C., Cunniff, C. M., Daniels, J. L., Kirby, R. S., Leavitt, L., Miller, L., Zahorodny, W., & Schieve, L. A. (2008). Advanced parental age and the risk of autism spectrum disorder. American Journal of Epidemiology, 168(11), 1268–1276.CrossRefGoogle Scholar
- 195.Hultman, C. M., Sandin, S., Levine, S. Z., Lichtenstein, P., & Reichenberg, A. (2010). Advancing paternal age and risk of autism: New evidence from a population-based study and a meta-analysis of epidemiological studies. Molecular Psychiatry, 16, 1203–1212.CrossRefGoogle Scholar
- 196.Sandin, S., Schendel, D., Magnusson, P., et al. (2016). CH: Autism risk associated with parental age and with increasing difference in age between the parents. Molecular Psychiatry, 21, 693–700.CrossRefGoogle Scholar
- 197.Yuen, R. K. C., Thiruvahindrapuram, B., Merico, D., Walker, S., Tammimies, K., Hoang, N., Chrysler, C., et al. (2015). Whole-genome sequencing of quartet families with autism spectrum disorder. Nature Medicine, 21(2), 185–191.CrossRefGoogle Scholar
- 198.Yuen RKC, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B, Patel RV, Whitney J, Deflaux N, Bingham J, Wang Z, Pellecchia G, et al (2017) Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nature Neuroscience.Google Scholar
- 199.Swert, L. F. D. (1999). Risk factors for allergy. European Journal of Pediatrics, 158(2), 89–94.CrossRefGoogle Scholar
- 200.Association of American Medical Colleges (2011). Recent studies and reports on physician shortages in the US. Tech. rep., Center for Workforce Studies Association of American Medical Colleges.Google Scholar
- 201.(2006) Forecasting allergy and immunology physician supply and demand through 2024. Tech. rep., The Center for Health Workforce Studies.Google Scholar
- 202.Holm, N. V. (1983). A note on ascertainment probability in the Allen/Hrubec twin model. Acta Geneticae Medicae et Gemellologiae, 32, 37–47.CrossRefGoogle Scholar
- 203.Gottfredson LS, Deary IJ (2004) Intelligence predicts health and longevity, but why? Curr Dir in Psyc Science. 13.Google Scholar
- 204.Deary, I. (2008). Why do intelligent people live longer? Nature, 456(13), 175–176.CrossRefGoogle Scholar
- 205.Deary, I. J., Whiteman, M. C., Starr, J. M., Whalley, L. J., & Fox, H. C. (2004). The impact of childhood intelligence on later life: following up the Scottish mental surveys of 1932 and 1947. Journal of Personality and Social Psychology, 86, 130–147.CrossRefGoogle Scholar
- 206.McGue, M., Vaupel, J. W., Holm, N., & Harvald, B. (1993). Longevity is moderately heritable in a sample of Danish twins born 1870-1880. Journal of Gerontology, 48(6), B237–B244.CrossRefGoogle Scholar
- 207.Bouchard, T., Lykken, D., McGue, M., Segal, N., & Tellegen, A. (1990). Sources of human psychological differences: the Minnesota study of twins reared apart. Science, 250(4978), 223–228.CrossRefGoogle Scholar
- 208.Plomin, R., Pedersen, N. L., Lichtenstein, P., & McClearn, G. E. (1994). Variability and stability in cognitive abilities are largely genetic later in life. Behavior Genetics, 24(3), 207–215.CrossRefGoogle Scholar
- 209.Ulric, N., Gwyneth, B., Jr, T. J. B., Boykin, A. W., Brody, N., Ceci, S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J., & Urbina, S. (1996). Intelligence: knowns and unknowns. American Psychologist, 51(2), 77–101.CrossRefGoogle Scholar
- 210.Bouchard, T. J. (2013). The Wilson effect: the increase in heritability of IQ with age. Twin Research and Human Genetics, 16(5), 923–930.MathSciNetCrossRefGoogle Scholar
- 211.Murray, C. A., Herrnstein, R. (1994). The bell curve: intelligence and class structure in American life, Free Press chap. 4:105–110.Google Scholar
- 212.Neisser, U. (1996). Intelligence: knowns and unknowns. American Psychologist, 51(2), 77–101.CrossRefGoogle Scholar
- 213.Gottfredson, L. S. (1998). The general intelligence factor. Scientific American Presents, 9(4), 24–29.Google Scholar
- 214.Schmidt, F. L., & Hunter, J. E. (1998). The validity and utility of selection methods in personnel psychology: practical and theoretical implications of 85 years of research findings. Psychological Bulletin, 124(2), 262–274.CrossRefGoogle Scholar
- 215.Burhana, N. A. S., Mohamadb, M. R., Kurniawana, Y., & Halim, A. (2014). The impact of low, average, and high IQ on economic growth and technological progress: do all individuals contribute equally? Intelligence, 46, 1–8.CrossRefGoogle Scholar
- 216.Bouchard, T. J. (2004). Genetic influence on human psychological traits. a survey. Current Directions in Psy- chological Science, 13(4), 148–151.CrossRefGoogle Scholar
- 217.Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., Ke, X., Hellard, S. L., Christoforou, A., Luciano, M., McGhee, K., Lopez, L., Gow, A. J., Corley, J., Redmond, P., Fox, H. C., Haggarty, P., Whalley, L. J., McNeill, G., God-dard, M. E., Espeseth, T., Lundervold, A. J., Reinvang, I., Pickles, A., Steen, V. M., Ollier, W., Porteous, D. J., Horan, M., Starr, J. M., Pendleton, N., Visscher, P. M., & Deary, I. J. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16, 996–1005.CrossRefGoogle Scholar
- 218.Rietveld, C. A., Esko, T., Davies, G., Pers, T. H., et al. (2014). Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. PNAS, 111(38), 13790–13794.CrossRefGoogle Scholar
- 219.Selzam, S., Krapohl, E., von Stumm, S., O’Reilly, P. F., Rimfeld, K., Kovas, Y., Dale, P. S., Lee, J. J., & Plomin, R. (2017). Predicting educational achievement from DNA. Molecular Psychiatry, 22, 267–272.CrossRefGoogle Scholar
- 220.Van Court, M., & Bean, F. (1985). Intelligence and fertility in the United States: 1912 to 1982. Intelligence, 9, 23–32.CrossRefGoogle Scholar
- 221.Lynn, R., & Van Court, M. (2004). New evidence of dysgenic fertility for intelligence in the United States. Intelligence, 32, 193–201.CrossRefGoogle Scholar
- 222.Meisenberg, G. (2010). The reproduction of intelligence. Intelligence, 38, 220–230.CrossRefGoogle Scholar
- 223.Dutton, E., van der Linden, D., & Lynn, R. (2016). The negative Flynn effect: a systematic literature review. Intelligence, 59, 163–169.CrossRefGoogle Scholar
- 224.Eysenck, H. J. (1979) The structure and measurement of intelligence. Transaction Publishers chap. 4.Google Scholar
- 225.Kell, H. J., Lubinski, D., & Benbow, C. P. (2013). Who rises to the top? Early indicators. Psychological Science, 24(5), 648–659.CrossRefGoogle Scholar
- 226.Anderson, D. K., Liang, J. W., & Lord, C. (2014). Predicting young adult outcome among more and less cognitively able individuals with autism spectrum disorders. Journal of Child Psychology and Psychiatry, 55(5), 485–494.CrossRefGoogle Scholar
- 227.Dilworth, C. (2011). Too smart for our own good: the ecological predicament of humankind. Cambridge University Press chap. 4. p 136.Google Scholar
- 228.The Ethics Committee of the American Society of Reproductive Medicine (ASRM). (2004). Embryo splitting for infertility treatment. Fertility and Sterility, 82, 256–257.Google Scholar
- 229.Prainsack, B., Hashiloni-Dolev, Y., Kasher, A., & Prainsack, J. (2010). Attitudes of social science students in Israel and Austria towards the belated twins scenario—an exploratory study. Public Understanding of Science, 19(4), 435–451.CrossRefGoogle Scholar
- 230.Wood, E. C., & Trounson, A. (2000). Uses of embryo duplication in humans: embryology and ethics. Human Reproduction, 15(3), 497–501.CrossRefGoogle Scholar
- 231.Harris, J. (1997). Goodbye Dolly? The ethics of human cloning. Journal of Medical Ethics, 23, 353–360.CrossRefGoogle Scholar
- 232.Kendler, K. S., Pedersen, N. L., Farahmand, B. Y., & Persson, P. G. (1996). The treated incidence of psychotic and affective illness in twins compared with population expectation: a study in the Swedish twin and psychiatric registries. Psychological Medicine, 26(6), 1135–1144.CrossRefGoogle Scholar
- 233.Rutter, M., & Redshaw, J. (1991). Growing up as a twin: twin-singleton differences in psychological develop- ment. Journal of Child Psychology and Psychiatry, 32(6), 885–895.CrossRefGoogle Scholar
- 234.Bryan, E. M. (1998). A spare or an individual? Cloning and the implications of monozygotic twinning. Human Reproduction Update, 4(6), 812–815.MathSciNetCrossRefGoogle Scholar
- 235.Dancause, K. N., Yevtushok, L., Lapchenko, S., Shumlyansky, I., Shevchenko, G., Wertelecki, W., & Garruto, R. M. (2010). Chronic radiation exposure in the Rivne-Polissia region of Ukraine: implications for birth defects. American Journal of Human Biology, 22(5), 667–674.CrossRefGoogle Scholar
- 236.Hook, E. B. (1981). Rates of chromosomal abnormalities at different maternal ages. Obstetrics and Gynecology, 58(3), 282–285.Google Scholar
- 237.Hook, E. B., Cross, P. K., & Schreinemachers, D. M. (1983). Chromosomal abnormality rates at amniocentesis and in live-born infants. JAMA, 249(15), 2034–2038.CrossRefGoogle Scholar
- 238.Chiang, T., Schultz, R. M., & Lampson, M. A. (2012). Meiotic origins of maternal age-related aneuploidy. Biology of Reproduction, 86, 1–7.CrossRefGoogle Scholar
- 239.Sun, J. X., Helgason, A., Masson, G., Ebenesersdóttir, S. S., Li, H., Mallick, S., Gnerre, S., Patterson, N., Kong, A., Reich, D., & Stefansson, K. (2012). A direct characterization of human mutation based on microsatellites. Nature Genetics, 44(10), 1161–1165.CrossRefGoogle Scholar