Skip to main content

Advertisement

Log in

Exploring the Integration of Threaded Implants: the Chemical Deep Etching Approach

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

While various techniques for analyses of the bone/implant interface are developed, most of them do not show the osseointegration process in details. In this article, we present a new inverted approach to explore the osseointegration of the dental implants, based on the chemical deep etching of titanium implants. An approach was tested on 18 implants inserted in 6 dogs. Bone/implant blocks were taken after 1, 3, and 6 months after implantation. The titanium was chemically removed from the interface, leaving the bone tissue intact. Once metal was removed, bone tissue was analyzed macroscopically and with a scanning electron microscope, afterwards decalcified and used for histological analysis. The clear patterns of implant integration into the bone tissue were obtained after 1, 3, and 6 months after implantation. After 1 month, the bone/implant interface was still very immature. After 3 months, the bone was already quite mature and organized. After 6 months, the external bone layer on the bone/implant interface appeared in its final osseointegrated form. The presented inverted method for the osseointegration analysis offers new insight into the healing process of the bone/implant interface after implantation, as well as integrative processes occurring around implants with different surfaces and designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dohan Ehrenfest, D. M., Coelho, P. G., Kang, B. S., Sul, Y. T., & Albrektsson, T. (2010). Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends in Biotechnology, 28(4), 198–206.

    Article  Google Scholar 

  2. Coelho, P. G., Granjeiro, J. M., Romanos, G. E., Suzuki, M., Silva, N. R., Cardaropoli, G., Thompson, V. P., & Lemons, J. E. (2009). Basic research methods and current trends of dental implant surfaces. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 88(2), 579–596.

    Article  Google Scholar 

  3. Coelho, P. G., Suzuki, M., Marin, C., Granato, R., Gil, L. F., Tovar, N., Jimbo, R., Neiva, R., & Bonfante, E. A. (2015). Osseointegration of plateau root form implants: unique healing pathway leading to Haversian-like long-term morphology. Advances in Experimental Medicine and Biology, 881, 111–128.

    Article  Google Scholar 

  4. Mirgazizov, M. Z., Khafizov, R. G., Mirgazizov, R. M., Kolobov, I. R., Tsyplakov, D. E., Mirgazizov, A. M., & Khafizova, F. A. (2013). Experimental base for internal connection dental implants for two-step implantation. Stomatologiia (Mosk), 92(3), 4–8.

    Google Scholar 

  5. Calvo-Guirado, J. L., Satorres-Nieto, M., Aguilar-Salvatierra, A., Delgado-Ruiz, R. A., Maté-Sánchez de Val, J. E., Gargallo-Albiol, J., Gómez-Moreno, G., & Romanos, G. E. (2015). Influence of surface treatment on osseointegration of dental implants: histological, histomorphometric and radiological analysis in vivo. Clinical Oral Investigations, 19(2), 509–517.

    Article  Google Scholar 

  6. Du, Z., Ivanovski, S., Hamlet, S. M., Feng, J. Q., & Xiao, Y. (2016). The ultrastructural relationship between osteocytes and dental implants following osseointegration. Clinical Implant Dentistry and Related Research, 18(2), 270–280.

    Article  Google Scholar 

  7. Eroglu, C. N., Ertugrul, A. S., Eskitascioglu, M., & Eskitascioglu, G. (2016). Changes in the surface of bone and acid-etched and sandblasted implants following implantation and removal. European Journal of Dentistry, 10(1), 77–81.

    Article  Google Scholar 

  8. Mirgazizov MZ, Hafizov RG, Mirgazizov AM, Mirgazizov RM, Hafizova FA, Zyplakov DE. (2013) Interfaces in osseointegrated dental implants and a new inverted approach to their microscopic and histological study. Inverted approach for implant interface analysis. POSEIDO, 1(3), 141–147

  9. Mirgazizov MZ, Hafizov RG, Mirgazizov М. (1996) Endosseous implant and its installation. RF Patent 2135117.

  10. Cai, W. X., Ma, L., Zheng, L. W., Kruse-Gujer, A., Stübinger, S., Lang, N. P., & Zwahlen, R. A. (2015). Influence of non-steroidal anti-inflammatory drugs (NSAIDs) on osseointegration of dental implants in rabbit calvaria. Clinical Oral Implants Research, 26(4), 478–483.

    Article  Google Scholar 

  11. Payer, M., Lohberger, B., Strunk, D., Reich, K. M., Acham, S., & Jakse, N. (2014). Effects of directly autotransplanted tibial bone marrow aspirates on bone regeneration and osseointegration of dental implants. Clinical Oral Implants Research, 25, 468–474.

    Article  Google Scholar 

  12. Mirgazizov MZ, Mirgazizov RM, Hafizova FA, Hafizov RG, Khairullin FA, Gunter VE, Zyplakov DE, Kozlova AK. (2009) The method of deep etching. RF Patent 2464646.

  13. Bancroft, J. D., & Stevens, A. (1996). Theory and practice of histotechnological techniques (4th ed.). New York(NY): Churchill Livingstone.

    Google Scholar 

  14. Hafizov RG, Mirgazizov MZ, Hafizova FA, Khairullin FA, Aripov RA, Kozlova AK. (2009) Surgical punch-conductor for gingival regeneration around dental implants. RF Patent 92608.

  15. Mirgazizov MZ, Hafizov RG, Mirgazizov RM. (1996) Dental implant and method of its installation. RF Patent 2135118.

  16. Hafizov RG., Mirgazizov MZ, Hafizova FA, Zhitko AK, Hafizov RG, Mirgazizov RM. (2009) Single-phased mechanical active implant. RF Patent 86449.

  17. Kang, B. S., Sul, Y. T., Oh, S. J., Lee, H. J., & Albrektsson, T. (2009). XPS, AES and SEM analysis of recent dental implants. Acta Biomaterialia, 5(6), 2222–2229.

    Article  Google Scholar 

  18. Morra, M., Cassinelli, C., Bruzzone, G., Carpi, A., Di Santi, G., Giardino, R., & Fini, M. (2003). Surface chemistry effects of topographic modification of titanium dental implant surfaces: 1. Surface analysis. The International Journal of Oral & Maxillofacial Implants, 18(1), 40–45.

    Google Scholar 

  19. Cassinelli, C., Morra, M., Bruzzone, G., Carpi, A., Di Santi, G., Giardin, R., & Fini, M. (2003). Surface chemistry effects oftopographic modification of titanium dental implant surfaces: 2. In vitro experiments. The International Journal of Oral & Maxillofacial Implants, 18(1), 46–52.

    Google Scholar 

  20. Marin, C., Bonfante, E. A., Jeong, R., Granato, R., Giro, G., Suzuki, M., Heitz, C., & Coelho, P. G. (2013). Histologic and biomechanical evaluation of 2 resorbable-blasting media implant surfaces at early implantation times. The Journal of Oral Implantology, 39(4), 445–453.

    Article  Google Scholar 

  21. Kang, B. S., Sul, Y. T., Johansson, C. B., Oh, S. J., Lee, H. J., & Albrektsson, T. (2012). The effect of calcium ion concentration on the bone response to oxidized titanium implants. Clinical Oral Implants Research, 23(6), 690–697.

    Article  Google Scholar 

  22. Jung, H., Kim, H. J., Hong, S., Kim, K. D., Moon, H. S., Je, J. H., & Hwu, Y. (2003). Osseointegration assessment of dental implants using a synchrotron radiation imaging technique: a preliminary study. The International Journal of Oral & Maxillofacial Implants, 18(1), 121–126.

    Google Scholar 

  23. Park, Y. S., Yi, K. Y., Lee, I. S., & Jung, Y. C. (2005). Correlation between microtomography and histomorphometry for assessment of implant osseointegration. Clinical Oral Implants Research, 16(2), 156–160.

    Article  Google Scholar 

  24. Song, J. W., Cha, J. Y., Bechtold, T. E., & Park, Y. C. (2013). Influence of peri-implant artifacts on bone morphometric analysis with micro-computed tomography. The International Journal of Oral & Maxillofacial Implants, 28(2), 519–525.

    Article  Google Scholar 

  25. Bartov, M. S., Karyagina, A. S., Gromov, A. V., Mishina, D. M., Trunova, G. I., Sidorova, E. I., Andreeva, E. V., Donchenko, S. V., Mukhametov, F. F., Mukhametov, U. F., Mirgazizov, M. Z., Mirgazizov, A. M., Hafizov, R. G., Lunin, V. G., Filippova, N. E., & Ginsburg, A. P. (2012). Osteoplastic preparations of the new generation “GAMALANT” containing growth regeneration factors of bone tissue. Department of Traumatology and Orthopedics, 2, 21–25.

    Google Scholar 

  26. Mirgazizov MZ, Mirgazizov AM, Mirgazizov RM, Hafizov RG, Lunin VG, Karyagina-Zhulina AS, Kotnova AP, Sharapova NE, Tkachuk AP, Bartov MS, Ginsburg AP. (2012) The method of address delivery of the osteoplastic materials containing growth and regeneration factors of the bone tissue. RF Patent 2469676.

  27. Dohan Ehrenfest, D. M., Vazquez, L., Park, Y. J., Sammartino, G., & Bernard, J. P. (2011). Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces. The Journal of Oral Implantology, 37(5), 525–542.

    Article  Google Scholar 

Download references

Funding

We like to acknowledge the support of this work by the Russian Science Foundation (project No. 15-14-00046) and subsidy of the Russian Government to support the Program of competitive development of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rais G. Hafizov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafizova, F.A., Mirgazizov, R.M., Hafizov, R.G. et al. Exploring the Integration of Threaded Implants: the Chemical Deep Etching Approach. BioNanoSci. 8, 313–318 (2018). https://doi.org/10.1007/s12668-017-0468-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0468-1

Keywords

Navigation