Production and Characterization of Antimicrobial Electrospun Nanofibers Containing Polyurethane, Zirconium Oxide and Zeolite


In this study, electrospinning technique has been utilized to prepare composite nanofiber mats of polyurethane (PU)/zirconium dioxide (ZrO2) and PU/zeolite, consisted by antimicrobial properties. Tensile strength measurement test was performed for the mechanical analysis of the nanofibers. Scanning electron microscopy (SEM) were performed for displaying the morphological features of the fiber structure. XRD tests were performed for revealing the chemical structure. Antimicrobial tests were also performed to display antimicrobial effects of the produced materials. In vitro test was also performed to determine cytotoxicity and biocompatibility. The present PU/ZrO2 and PU/zeolite composite nanofibers resulted with improved mechanical properties and good antimicrobial properties against either their pure forms or other studies. Cell proliferation and viability also increased significantly with increase in zeolite and ZrO2 ratio. It is concluded that this composition provides a novel alternative as an antimicrobial material which can be suitable as a wound dressing or a coating material for various healthcare engineering applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Greiner, A., & Wendorff, J. H. (2007). Electrospinning a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie, International Edition, 46, 5670–5703.

    Article  Google Scholar 

  2. 2.

    Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49, 603–5621.

    Article  Google Scholar 

  3. 3.

    Kucinska-Lipka, J., Gubanska, I., Janik, H., & Sienkiewicz, M. (2015). M. Review: fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Materials Science and Engineering: C, 46, 166–176.

    Article  Google Scholar 

  4. 4.

    Tijing, L. D., Ruelo, M. T. G., Amarjargal, A., Pant, H. J., Park, C.-H., & Kim, C. S. (2012). One step fabrication of antibacterial silver nanoparticles poly ethylene oxide polyurethane bicomponent hybrid nanofibrous mat by dual spinneret electrospinning. Materials Chemistry and Physics, 134, 557–561.

    Article  Google Scholar 

  5. 5.

    Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances, 28, 325–347.

    Article  Google Scholar 

  6. 6.

    Nirmala, R., Jeon, K. S., & Lim, B. H. (2013). Preparation and characterization of copper oxide particles incorporated polyurethane composite nanofibers by electrospinning. Ceramics International, 39, 9651–9658.

    Article  Google Scholar 

  7. 7.

    Tijing, L. D., Ruelo, M. T. G., Amarjargal, A., Pant, H. R., Park, C.-H., Kim, D. W., & Kim, C. S. (2012). Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chemical Engineering Journal, 197, 41–48.

    Article  Google Scholar 

  8. 8.

    Jangra, S. L., Stalin, K., Dilbaghi, N., Kumar, S., Tawale, J., Singh, S. P., & Pasricha, R. (2012). Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes. Journal of Nanoscience and Nanotechnology, 12, 7105–7112.

    Article  Google Scholar 

  9. 9.

    Tijing, L. D., Ruelo, M. T. G., Amarjargal, A., Pant, H. J., Park, C.-H., Kim, D. W., & Kim, C. S. (2014). Electrospun ZrO2 fibers obtained from polyvinyl alcohol/zirconium n-propoxide composite fibers processed through halide free sol–gel route using acetic acid as a stabilizer. Materials Letters, 115, 64–67.

    Article  Google Scholar 

  10. 10.

    Hecht, K. (2010). Application of natural zeolites in medicine and cosmetology – ZEOMEDCOS (pp. 7–46). Baku London: SWB.

    Google Scholar 

  11. 11.

    Pavelic K and Hadz ija M (2003) Medical Applications of Ruder Bosˇkovic’ Institute, Zagreb.

  12. 12.

    Lubasova, D., & Barbora, S. (2014). Antibacterial efficiency of nanofiber membranes with biologically active nanoparticles. Bali: International Conference on Agriculture, Biology and Environmental Sciences (ICABES'14).

    Google Scholar 

  13. 13.

    Singhn, S., Singh, V., Vijayakumar, M., & Prasad, V. V. B. (2013). Dual fiber behavior of polyvinyl alcohol/zirconium n-propoxide composite fibrous mats prepared via electrospinning. Ceramics International, 39, 5031–5037.

    Article  Google Scholar 

  14. 14.

    Rădulescu, M., Andronescu, E., Holban, A. M., Vasile, B. S., Iordache, F., Mogoantă, L., Mogoșanu, G. D., Grumezescu, A. M., Georgescu, M., & Chifiriuc, M. C. (2016). Antimicrobial nanostructured bioactive coating based on Fe3O4 and patchouli oil for wound dressing. Metals, 6(5), 103.

    Article  Google Scholar 

  15. 15.

    Rădulescu, D., et al. (2016). Mesoporous silica coatings for cephalosporin active release at the bone-implant interface. Applied Surface Science, 374, 165–171.

    Article  Google Scholar 

  16. 16.

    Powers, J. M., & Sakaguchi, R. L. (2006). Resin composite restorative material (p. 193). USA: Mosby Elsevier Craig's Restorative Dental Materials.

    Google Scholar 

  17. 17.

    Trovati, G., Sanches, E. A., Neto, S. C., Mascarenhas, Y. P., & Chierice, G. O. (2010). Characterization of polyurethane resins by FTIR, TGA, and XRD. Journal of Applied Polymer Science, 115, 263–268.

    Article  Google Scholar 

  18. 18.

    Dias, R. C. M., Góesb, A. M., Oréficea, R. L., Ayresa, E., & Serakides, R. (2010). Degradable polyurethane nanoparticles containing vegetable oils. Materials Research, 13, 211–218.

    Article  Google Scholar 

  19. 19.

    Zhang, D., Zhao, S., Zhang, Y., & Hou, Y. (2015). One dimensional Ti-doped zirconia wires prepared by electrospinning: characterization, morphology and photophysical features. Journal of Luminescence, 157, 338–343.

    Article  Google Scholar 

  20. 20.

    Anis, S. F., Khalil, A., Singaravel, G., & Hashaikeh, R. (2016). A review on the fabrication of zeolite and mesoporous inorganic nanofibers formation for catalytic applications. Microporous and Mesoporous Materials, 223, 176–192.

    Article  Google Scholar 

  21. 21.

    Chen, S., Ge, L., Mueller, A., Carlson, M. A., Teusink, M. J., Shuler, F. D., & Xie, J. (2017). Twisting electrospun nanofiber fine strips into functional sutures for sustained co-delivery of gentamicin and silver. Nanomedicine: Nanomedicine Nanotechnology Biology Medicine, 13, 1435–1445.

    Article  Google Scholar 

Download references


This study has been founded by BAPKO, Marmara University, grant no. FEN-B-080415-0117. Additionally, scanning electron microscopy analyses were possible due to EU funding grant POSCCE-A2-O2.2.1-2013-1/Priority Direction 2, Project No. 638/12.03.2014, code SMIS-CSNR 48652.

Author information



Corresponding author

Correspondence to Oguzhan Gunduz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aydogdu, M.O., Oprea, A.E., Trusca, R. et al. Production and Characterization of Antimicrobial Electrospun Nanofibers Containing Polyurethane, Zirconium Oxide and Zeolite. BioNanoSci. 8, 154–165 (2018).

Download citation


  • Polyurethane
  • Zirconia
  • Zeolite
  • Electrospinning
  • Nanofibers
  • Antimicrobial activity