Skip to main content
Log in

Studying of Quantum Dots Langmuir Monolayers Stability at the Different Subphase Temperature

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The monolayer of CdSe/CdS/ZnS quantum dots was formed on the water surface at 11, 21, and 31 °C and studied by compression isotherms. Increasing subphase temperature increases the lift-off point of the monolayer and decreases the minimum area which can be reached on compression. Compression changes the monolayer state from LE to LC. The highest compression state can be reached at the lowest subphase temperatures. Increasing water subphase temperature leads to increasing homogeneity of the monolayers. Increasing subphase temperature leads to increasing quiescent layer thickness and diffusion rate. At the high subphase temperature, a duration of collective flowing of desorption processes from water interface to quiescent layer and from quiescent layer to turbulent layer is decreasing that connected with reaching a quiescent layer with which the saturation does not take a place at the achieved diffusion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Randall, J. N., Luscombe, J. H., & Bate, R. T. (1994). Chapter 13—quantum dot devices. VLSI Electronics Microstructure Science, 24, 419–445.

    Article  Google Scholar 

  2. Kima, H. S., & Yoon, K. B. (2014). Preparation and characterization of CdS and PbS quantum dots in zeolite Y and their applications for nonlinear optical materials and solar cell. Coordination Chemistry Reviews, 263–264, 239–256.

    Article  Google Scholar 

  3. Lim, J., Park, M., Bae, W. K., et al. (2013). Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano, 7(10), 9019–9026.

    Article  Google Scholar 

  4. Chuang, P. H., Lin, C. C., & Liu, R. S. (2014). Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index. ACS Applied Materials & Interfaces, 6, 15379–15387.

    Article  Google Scholar 

  5. Liu, I. P., Chang, C. W., Teng, H., et al. (2014). Performance enhancement of quantum-dot-sensitized solar cells by potential-induced ionic layer adsorption and reaction. ACS Applied Materials & Interfaces, 6, 19378–19384.

    Article  Google Scholar 

  6. Jin, H., Choi, S., Lee, H. J., et al. (2013). Layer-by-layer assemblies of semiconductor quantum dots for nanostructured photovoltaic devices. Journal of Physical Chemistry Letters, 4, 2461–2470.

    Article  Google Scholar 

  7. Reed, M. A., & Seabaugh, A. C. (1994). Prospects for semiconductor quantum devices. Molecular and Biomolecular Electronics, 240(2), 15–42.

    Article  Google Scholar 

  8. Eita, M., Wagberg, L., & Muhammed, M. (2012). Spin-assisted multilayers of poly(methyl methacrylate) and zinc oxide quantum dots for ultraviolet-blocking applications. ACS Applied Materials & Interfaces, 4, 2920–2925.

    Article  Google Scholar 

  9. Leck, K. S., Divayana, Y., Zhao, D., et al. (2013). Quantum dot light-emitting diode with quantum dots inside the hole transporting layers. ACS Applied Materials & Interfaces, 5, 6535–6540.

    Article  Google Scholar 

  10. Bae, W. K., Kwak, J., Lim, J., et al. (2010). Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. Nano Letters, 10, 2368–2373.

    Article  Google Scholar 

  11. Lambert, K., Wittebrood, L., Moreels, I., et al. (2006). Langmuir–Blodgett monolayers of InP quantum dots with short chain ligands. Journal of Colloid and Interface Science, 300, 597–602.

    Article  Google Scholar 

  12. Lambert, K., Capek, R. K., Bodnarchuk, M. I., et al. (2010). Langmuir-Schaefer deposition of quantum dot multilayers. Langmuir, 26(11), 7732–7736.

    Article  Google Scholar 

  13. Protasov, D. Y., Jian, W. B., Svit, K. A., et al. (2011). Formation of arrays of free-standing CdS quantum dots using the Langmuir-Blodgett technique. Journal of Physical Chemistry C, 115, 20148–20152.

    Article  Google Scholar 

  14. Albrecht, O., Matsuda, H., Eguchi, K., et al. (1999). The dissolution of myristic acid monolayers in water. Thin Solid Films, 338, 252–264.

    Article  Google Scholar 

  15. Radhakrishnan, C., Lo, M. K. F., Knobler, C. M., et al. (2011). Capping-ligand effect on the stability of CdSe quantum dot Langmuir monolayers. Langmuir, 27, 2099–2103.

    Article  Google Scholar 

  16. Shen, Y. J., Lee, Y. L., & Yang, Y. M. (2006). Monolayer behavior and Langmuir-Blodgett manipulation of CdS quantum dots. The Journal of Physical Chemistry. B, 110, 9556–9564.

    Article  Google Scholar 

  17. Li, J. J., Wang, Y. A., Guo, W., Keay, J. C., Mishima, T. D., Johnson, M. B., & Peng, X. (2003). Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. Journal of the American Chemical Society, 125, 12567–12575.

    Article  Google Scholar 

  18. Speranskaya, E. S., Beloglazova, N. V., Lenain, P., De Saeger, S., Wang, Z., Zhang, S., Hens, Z., Knopp, D., Potapkin, D. V., & Goryacheva, I. Y. (2014). Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics, 53, 225–231.

    Article  Google Scholar 

  19. Smith, R. D., & Berg, J. C. (1980). The collapse of surfactant monolayers at the air-water interface. Journal of Colloid and Interface Science, 74(1), 273–286.

    Article  Google Scholar 

  20. Ter-Minassian-Saraga, L. (1956). Recent work on spread monolayers, adsorption and desorption. Journal of Colloid Science, 11, 398–418.

    Article  Google Scholar 

  21. Adamson, A. W., & Gast, A. P. (1997). Physical chemistry of surfaces (sixth ed.). New-York: John Wiley & Sons Inc A wiley-interscience publication.

    Google Scholar 

  22. Matshaya, T. J., Lanterna, A. E., Granados, A. M., et al. (2014). Distinctive interactions of oleic acid covered magnetic nanoparticles with saturated and unsaturated phospholipids in Langmuir monolayers. Langmuir, 30, 5888–5896.

    Article  Google Scholar 

  23. Pad, S. G., Matthews, R. H., & Cornwel, D. G. (1973). Kinetics of the processes of desorption from fatty acid monolayers. Journal of Lipid Research, 14, 26–31.

    Google Scholar 

  24. Chander, R., Lo, M. K. F., Knobler, C. M., Garcia-Garibay, M. A., & Monbouquette, H. G. (2011). Capping-ligand effect on the stability of CdSe quantum dot Langmuir monolayers. Langmuir, 27, 2099–2103.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by grant of Russian Science Foundation RSF-14-12-00275 and National Research Saratov State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya A. Gorbachev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbachev, I.A., Shtykov, S.N., Brezesinski, G. et al. Studying of Quantum Dots Langmuir Monolayers Stability at the Different Subphase Temperature. BioNanoSci. 7, 686–691 (2017). https://doi.org/10.1007/s12668-017-0404-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0404-4

Keywords

Navigation