Advertisement

BioNanoScience

, Volume 6, Issue 4, pp 520–522 | Cite as

Fabrication of Magnetically Modified Chlorella pyrenoidosa Microalgae Using Poly(diallyldimethyl ammonium)-stabilised Magnetic Nanoparticles

  • Elvira Rozhina
  • Vladimir Evtugyn
  • Anna Danilushkina
  • Rawil Fakhrullin
Article

Abstract

We report fabrication of magnetically responsive Chlorella pyrenoidosa cells using poly(diallyldimethyl ammonium chloride)-stabilised iron oxide nanoparticles. The nanoparticles were characterised using transmission electron microscopy and dark-field microscopy. The interaction of magnetic nanomaterials with C. pyrenoidosa cells was studied, and high biocompability of these nanomaterials was demonstrated.

Keywords

Magnetic nanoparticles Chlorella pyrenoidosa TEM Cell surface engineering Magnetic modification 

Notes

Acknowledgments

This work was supported by the Foundation for Assistance to Small Innovative Enterprises (FASIE) in the frame of UMNIK program. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

References

  1. 1.
    Zamaleeva, A. I., Sharipova, I. R., Shamagsumova, R. V., Ivanov, A. N., Evtugyn, G. A., Ishmuchametova, D. G., et al. (2011). A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Analytical Methods, 23, 509–513.CrossRefGoogle Scholar
  2. 2.
    Trilling, A. K., Beekwildera, J., Zuilhof, H. (2013). Antibody orientation on biosensor surfaces: a minireview. Analyst, 138, 1619–1627.CrossRefGoogle Scholar
  3. 3.
    Chouteau, C., Dzyadevych, S., Chovelon, J., Durrieu, C. (2004). Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosensors and Bioelectronics, 19, 1089–1096.CrossRefGoogle Scholar
  4. 4.
    Ferro, Y., Perullini, M., Jobbagy, M., Bilmes, S. A., Durrieu, C. (2012). Development of a biosensor for environmental monitoring based on microalgae immobilized in silica hydrogels. Sensors, 12(12), 16879–16891.CrossRefGoogle Scholar
  5. 5.
    Fakhrullin, R. F., Shlykova, L. V., Zamaleeva, A. I., Nurgaliev, D. K., Osin, Y. N., Garcia-Alonoso, J., et al. (2010). Interfacing living unicellular algae cells with biocompatible polyelectrolyte-stabilised magnetic nanoparticles. Macromolecular Bioscience, 10(10), 1257–1264.CrossRefGoogle Scholar
  6. 6.
    Pack, D. W., Hoffman, A. S., Pun, S., Stayton, P. S. (2005). Design and development of polymers for gene delivery. Nature Reviews Drug Discovery, 4, 581–593.CrossRefGoogle Scholar
  7. 7.
    Zhang, B. B., Wang, L., Charles, V., Rooke, J. C., Su, B. L. (2016). Robust and biocompatible hybrid matrix with controllable permeability for microalgae encapsulation. ACS Applied Materials & Interfaces, 8(14), 8939–8946.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Elvira Rozhina
    • 1
  • Vladimir Evtugyn
    • 2
  • Anna Danilushkina
    • 1
  • Rawil Fakhrullin
    • 1
    • 2
  1. 1.Bionanotechnology LaboratoryKazan Federal UniversityKazanRussian Federation
  2. 2.Interdisciplinary Centre for Analytical Microscopy Kazan Federal UniversityKazanRussian Federation

Personalised recommendations