Advertisement

BioNanoScience

, Volume 6, Issue 3, pp 177–184 | Cite as

Molecular Modeling and Mechanics of Acrylic Adhesives on a Graphene Substrate with Roughness

  • Zhao Qin
  • Kai Jin
  • Markus J. Buehler
Article

Abstract

Understanding the mechanics of amorphous polymeric adhesives on a solid substrate at the fundamental scale level is critical for designing and optimizing the mechanics of composite materials. Using molecular dynamics simulations, we investigate the interfacial strength between graphene and polyacrylic and discuss how the surface roughness of graphene affects the interfacial strength in different loading directions. Our results show that a single angstrom increase in graphene roughness can lead to almost eight times higher shear strength, and that such result is insensitive to compression. We have also revealed that the graphene roughness has modest effect on tensile strength of the interface. Our simulations elucidate the molecular mechanism of these different effects in different loading conditions and provide insights for composite designs.

Keywords

Mechanics Adhesion Strength Molecular dynamics 

Notes

Acknowledgments

We acknowledge support from Henkel Corporation. We acknowledge fruitful discussions with Dr. C. Paul.

References

  1. 1.
    Hovden, R., Wolf, S. E., Holtz, M. E., Marin, F., Muller, D. A., Estroff, L. A. (2015). Nanoscale assembly processes revealed in the nacroprismatic transition zone of Pinna nobilis mollusc shells. Nature Communications, 6, 10097.CrossRefGoogle Scholar
  2. 2.
    Qin, Z., & Buehler, M. J. (2013). Impact tolerance in mussel thread networks by heterogeneous material distribution. Nature Communications, 4, 2187.Google Scholar
  3. 3.
    Dimas, L. S., Bratzel, G. H., Eylon, I., Buehler, M. J. (2013). Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing. Advanced Functional Materials, 23(36), 4629–38.CrossRefGoogle Scholar
  4. 4.
    Solar, M., Qin, Z., Buehler, M. J. (2014). Molecular mechanics and performance of crosslinked amorphous polymer adhesives. Journal of Materials Research, 29(9), 1077–85.CrossRefGoogle Scholar
  5. 5.
    Qin, Z., & Buehler, M. J. (2014). Molecular mechanics of mussel adhesion proteins. Journal of the Mechanics and Physics of Solids, 62, 19–30.CrossRefGoogle Scholar
  6. 6.
    Petrone, L., Kumar, A., Sutanto, C. N., Patil, N. J., Kannan, S., Palaniappan, A., et al. (2015). Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nature Communications, 6, 8737.CrossRefGoogle Scholar
  7. 7.
    Li, Y. N., Ortiz, C., Boyce, M. C. (2013). A generalized mechanical model for suture interfaces of arbitrary geometry. Journal of the Mechanics and Physics of Solids, 61(4), 1144–67.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yang, W., Sherman, V. R., Gludovatz, B., Mackey, M., Zimmermann, E. A., Chang, E. H., et al. (2014). Protective role of Arapaima gigas fish scales: structure and mechanical behavior. Acta Biomaterialia, 10(8), 3599–614.CrossRefGoogle Scholar
  9. 9.
    Knowles, T. P. J., & Buehler, M. J. (2011). Nanomechanics of functional and pathological amyloid materials. Nature Nanotechnology, 6(8), 469–79.CrossRefGoogle Scholar
  10. 10.
    Geim, A. K., & Kim, P. (2008). Carbon wonderland. Scientific American, 298(4), 90–7.CrossRefGoogle Scholar
  11. 11.
    Lee, C., Wei, X. D., Kysar, J. W., Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–8.CrossRefGoogle Scholar
  12. 12.
    Sen, D., Novoselov, K. S., Reis, P. M., Buehler, M. J. (2010). Tearing graphene sheets from adhesive substrates produces tapered nanoribbons. Small, 6(10), 1108–16.CrossRefGoogle Scholar
  13. 13.
    Compton, O. C., Cranford, S. W., Putz, K. W., An, Z., Brinson, L. C., Buehler, M. J., et al. (2012). Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano, 6(3), 2008–19.CrossRefGoogle Scholar
  14. 14.
    Qin, Z., Pugno, N. M., Buehler, M. J. (2014). Mechanics of fragmentation of crocodile skin and other thin films. Scientific Reports, 4, 4966.Google Scholar
  15. 15.
    Auhl, R., Everaers, R., Grest, G. S., Kremer, K., Plimpton, S. J. (2003). Equilibration of long chain polymer melts in computer simulations. Journal of Chemical Physics, 119(24), 12718–28.CrossRefGoogle Scholar
  16. 16.
    Kremer, K., & Grest, G. S. (1990). Dynamics of entangled linear polymer melts—a molecular-dynamics simulation. Journal of Chemical Physics, 92(8), 5057–86.CrossRefGoogle Scholar
  17. 17.
    Sides, S. W., Grest, G. S., Stevens, M. J., Plimpton, S. J. (2004). Effect of end-tethered polymers on surface adhesion of glassy polymers. Journal of Polymer Science Polymer Physics, 42(2), 199–208.CrossRefGoogle Scholar
  18. 18.
    Sides, S. W., Grest, G. S., Stevens, M. J. K. (2002). Large-scale simulation of adhesion dynamics for end-grafted polymers. Macromolecules, 35(2), 566–73.CrossRefGoogle Scholar
  19. 19.
    Stevens, M. J. (2001). Manipulating connectivity to control fracture in network polymer adhesives. Macromolecules, 34(5), 1411–5.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Stevens, M. J. (2001). Interfacial fracture between highly cross-linked polymer networks and a solid surface: effect of interfacial bond density. Macromolecules, 34(8), 2710–8.CrossRefGoogle Scholar
  21. 21.
    Tsige, M., Lorenz, C. D., Stevens, M. J. (2004). Role of network connectivity on the mechanical properties of highly cross-linked polymers. Macromolecules, 37(22), 8466–72.CrossRefGoogle Scholar
  22. 22.
    Tsige, M., & Stevens, M. J. (2004). Effect of cross-linker functionality on the adhesion of highly cross-linked polymer networks: a molecular dynamics study of epoxies. Macromolecules, 37(2), 630–7.CrossRefGoogle Scholar
  23. 23.
    Dauberosguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., Hagler, A. T. (1988). Structure and energetics of ligand-binding to proteins—Escherichia coli dihydrofolate reductase trimethoprim, a drug-receptor system. Proteins-Structure Function and Genetics, 4(1), 31–47.CrossRefGoogle Scholar
  24. 24.
    Plimpton, S. (1995). Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117(1), 1–19.CrossRefzbMATHGoogle Scholar
  25. 25.
    Humphrey, W., Dalke, A., Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics and Modelling, 14(1), 33–8.CrossRefGoogle Scholar
  26. 26.
    Qin, Z., Taylor, M., Hwang, M., Bertoldi, K., Buehler, M. J. (2014). Effect of wrinkles on the surface area of graphene: toward the design of nanoelectronics. Nano Letters, 14(11), 6520–5.CrossRefGoogle Scholar
  27. 27.
    Nair, A. K., Qin, Z., Buehler, M. J. (2012). Cooperative deformation of carboxyl groups in functionalized carbon nanotubes. International Journal of Solids and Structures, 49(18), 2418–23.CrossRefGoogle Scholar
  28. 28.
    Qin, Z., & Buehler, M. (2012). Bioinspired design of functionalised graphene. Molecular Simulation, 38(8–9), 695–703.CrossRefGoogle Scholar
  29. 29.
    Qin, Z., & Buehler, M. J. (2015). Nonlinear viscous water at nanoporous two-dimensional interfaces resists high-speed flow through cooperativity. Nano Letters, 15(6), 3939–44.CrossRefGoogle Scholar
  30. 30.
    Koga, K., Tanaka, H., Zeng, X. C. (2000). First-order transition in confined water between high-density liquid and low-density amorphous phases. Nature, 408(6812), 564–7.CrossRefGoogle Scholar
  31. 31.
    Nanok, T., Artrith, N., Pantu, P., Bopp, P. A., Limtrakul, J. (2009). Structure and dynamics of water confined in single-wall nanotubes. Journal of Physical Chemistry A, 113(10), 2103–8.CrossRefGoogle Scholar
  32. 32.
    Zou, J., Ji, B. H., Feng, X. Q., Gao, H. J. (2006). Molecular-dynamic studies of carbon-water-carbon composite nanotubes. Small, 2(11), 1348–55.CrossRefGoogle Scholar
  33. 33.
    Xu, J. Z., Chen, C., Wang, Y., Tang, H., Li, Z. M., Hsiao, B. S. (2011). Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules, 44(8), 2808–18.CrossRefGoogle Scholar
  34. 34.
    Meng, J. S., Zhang, Y. Y., Cranford, S. W., Minus, M. L. (2014). Nanotube dispersion and polymer conformational confinement in a nanocomposite fiber: a joint computational experimental study. Journal of Physical Chemistry B, 118(31), 9476–85.CrossRefGoogle Scholar
  35. 35.
    Xia, W., & Keten, S. (2015). Interfacial stiffening of polymer thin films under nanoconfinement. Extreme Mechanics Letters, 4, 89–95.CrossRefGoogle Scholar
  36. 36.
    Qin, Z., Dimas, L., Adler, D., Bratzel, G., Buehler, M. J. (2014). Biological materials by design. Journal of Physics-Condensed Matter, 26(7), 073101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations