Skip to main content
Log in

Molecular Modeling and Mechanics of Acrylic Adhesives on a Graphene Substrate with Roughness

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Understanding the mechanics of amorphous polymeric adhesives on a solid substrate at the fundamental scale level is critical for designing and optimizing the mechanics of composite materials. Using molecular dynamics simulations, we investigate the interfacial strength between graphene and polyacrylic and discuss how the surface roughness of graphene affects the interfacial strength in different loading directions. Our results show that a single angstrom increase in graphene roughness can lead to almost eight times higher shear strength, and that such result is insensitive to compression. We have also revealed that the graphene roughness has modest effect on tensile strength of the interface. Our simulations elucidate the molecular mechanism of these different effects in different loading conditions and provide insights for composite designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hovden, R., Wolf, S. E., Holtz, M. E., Marin, F., Muller, D. A., Estroff, L. A. (2015). Nanoscale assembly processes revealed in the nacroprismatic transition zone of Pinna nobilis mollusc shells. Nature Communications, 6, 10097.

    Article  Google Scholar 

  2. Qin, Z., & Buehler, M. J. (2013). Impact tolerance in mussel thread networks by heterogeneous material distribution. Nature Communications, 4, 2187.

    Google Scholar 

  3. Dimas, L. S., Bratzel, G. H., Eylon, I., Buehler, M. J. (2013). Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing. Advanced Functional Materials, 23(36), 4629–38.

    Article  Google Scholar 

  4. Solar, M., Qin, Z., Buehler, M. J. (2014). Molecular mechanics and performance of crosslinked amorphous polymer adhesives. Journal of Materials Research, 29(9), 1077–85.

    Article  Google Scholar 

  5. Qin, Z., & Buehler, M. J. (2014). Molecular mechanics of mussel adhesion proteins. Journal of the Mechanics and Physics of Solids, 62, 19–30.

    Article  Google Scholar 

  6. Petrone, L., Kumar, A., Sutanto, C. N., Patil, N. J., Kannan, S., Palaniappan, A., et al. (2015). Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nature Communications, 6, 8737.

    Article  Google Scholar 

  7. Li, Y. N., Ortiz, C., Boyce, M. C. (2013). A generalized mechanical model for suture interfaces of arbitrary geometry. Journal of the Mechanics and Physics of Solids, 61(4), 1144–67.

    Article  MathSciNet  Google Scholar 

  8. Yang, W., Sherman, V. R., Gludovatz, B., Mackey, M., Zimmermann, E. A., Chang, E. H., et al. (2014). Protective role of Arapaima gigas fish scales: structure and mechanical behavior. Acta Biomaterialia, 10(8), 3599–614.

    Article  Google Scholar 

  9. Knowles, T. P. J., & Buehler, M. J. (2011). Nanomechanics of functional and pathological amyloid materials. Nature Nanotechnology, 6(8), 469–79.

    Article  Google Scholar 

  10. Geim, A. K., & Kim, P. (2008). Carbon wonderland. Scientific American, 298(4), 90–7.

    Article  Google Scholar 

  11. Lee, C., Wei, X. D., Kysar, J. W., Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–8.

    Article  Google Scholar 

  12. Sen, D., Novoselov, K. S., Reis, P. M., Buehler, M. J. (2010). Tearing graphene sheets from adhesive substrates produces tapered nanoribbons. Small, 6(10), 1108–16.

    Article  Google Scholar 

  13. Compton, O. C., Cranford, S. W., Putz, K. W., An, Z., Brinson, L. C., Buehler, M. J., et al. (2012). Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano, 6(3), 2008–19.

    Article  Google Scholar 

  14. Qin, Z., Pugno, N. M., Buehler, M. J. (2014). Mechanics of fragmentation of crocodile skin and other thin films. Scientific Reports, 4, 4966.

    Google Scholar 

  15. Auhl, R., Everaers, R., Grest, G. S., Kremer, K., Plimpton, S. J. (2003). Equilibration of long chain polymer melts in computer simulations. Journal of Chemical Physics, 119(24), 12718–28.

    Article  Google Scholar 

  16. Kremer, K., & Grest, G. S. (1990). Dynamics of entangled linear polymer melts—a molecular-dynamics simulation. Journal of Chemical Physics, 92(8), 5057–86.

    Article  Google Scholar 

  17. Sides, S. W., Grest, G. S., Stevens, M. J., Plimpton, S. J. (2004). Effect of end-tethered polymers on surface adhesion of glassy polymers. Journal of Polymer Science Polymer Physics, 42(2), 199–208.

    Article  Google Scholar 

  18. Sides, S. W., Grest, G. S., Stevens, M. J. K. (2002). Large-scale simulation of adhesion dynamics for end-grafted polymers. Macromolecules, 35(2), 566–73.

    Article  Google Scholar 

  19. Stevens, M. J. (2001). Manipulating connectivity to control fracture in network polymer adhesives. Macromolecules, 34(5), 1411–5.

    Article  MathSciNet  Google Scholar 

  20. Stevens, M. J. (2001). Interfacial fracture between highly cross-linked polymer networks and a solid surface: effect of interfacial bond density. Macromolecules, 34(8), 2710–8.

    Article  Google Scholar 

  21. Tsige, M., Lorenz, C. D., Stevens, M. J. (2004). Role of network connectivity on the mechanical properties of highly cross-linked polymers. Macromolecules, 37(22), 8466–72.

    Article  Google Scholar 

  22. Tsige, M., & Stevens, M. J. (2004). Effect of cross-linker functionality on the adhesion of highly cross-linked polymer networks: a molecular dynamics study of epoxies. Macromolecules, 37(2), 630–7.

    Article  Google Scholar 

  23. Dauberosguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., Hagler, A. T. (1988). Structure and energetics of ligand-binding to proteins—Escherichia coli dihydrofolate reductase trimethoprim, a drug-receptor system. Proteins-Structure Function and Genetics, 4(1), 31–47.

    Article  Google Scholar 

  24. Plimpton, S. (1995). Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117(1), 1–19.

    Article  MATH  Google Scholar 

  25. Humphrey, W., Dalke, A., Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics and Modelling, 14(1), 33–8.

    Article  Google Scholar 

  26. Qin, Z., Taylor, M., Hwang, M., Bertoldi, K., Buehler, M. J. (2014). Effect of wrinkles on the surface area of graphene: toward the design of nanoelectronics. Nano Letters, 14(11), 6520–5.

    Article  Google Scholar 

  27. Nair, A. K., Qin, Z., Buehler, M. J. (2012). Cooperative deformation of carboxyl groups in functionalized carbon nanotubes. International Journal of Solids and Structures, 49(18), 2418–23.

    Article  Google Scholar 

  28. Qin, Z., & Buehler, M. (2012). Bioinspired design of functionalised graphene. Molecular Simulation, 38(8–9), 695–703.

    Article  Google Scholar 

  29. Qin, Z., & Buehler, M. J. (2015). Nonlinear viscous water at nanoporous two-dimensional interfaces resists high-speed flow through cooperativity. Nano Letters, 15(6), 3939–44.

    Article  Google Scholar 

  30. Koga, K., Tanaka, H., Zeng, X. C. (2000). First-order transition in confined water between high-density liquid and low-density amorphous phases. Nature, 408(6812), 564–7.

    Article  Google Scholar 

  31. Nanok, T., Artrith, N., Pantu, P., Bopp, P. A., Limtrakul, J. (2009). Structure and dynamics of water confined in single-wall nanotubes. Journal of Physical Chemistry A, 113(10), 2103–8.

    Article  Google Scholar 

  32. Zou, J., Ji, B. H., Feng, X. Q., Gao, H. J. (2006). Molecular-dynamic studies of carbon-water-carbon composite nanotubes. Small, 2(11), 1348–55.

    Article  Google Scholar 

  33. Xu, J. Z., Chen, C., Wang, Y., Tang, H., Li, Z. M., Hsiao, B. S. (2011). Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules, 44(8), 2808–18.

    Article  Google Scholar 

  34. Meng, J. S., Zhang, Y. Y., Cranford, S. W., Minus, M. L. (2014). Nanotube dispersion and polymer conformational confinement in a nanocomposite fiber: a joint computational experimental study. Journal of Physical Chemistry B, 118(31), 9476–85.

    Article  Google Scholar 

  35. Xia, W., & Keten, S. (2015). Interfacial stiffening of polymer thin films under nanoconfinement. Extreme Mechanics Letters, 4, 89–95.

    Article  Google Scholar 

  36. Qin, Z., Dimas, L., Adler, D., Bratzel, G., Buehler, M. J. (2014). Biological materials by design. Journal of Physics-Condensed Matter, 26(7), 073101.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge support from Henkel Corporation. We acknowledge fruitful discussions with Dr. C. Paul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., Jin, K. & Buehler, M.J. Molecular Modeling and Mechanics of Acrylic Adhesives on a Graphene Substrate with Roughness. BioNanoSci. 6, 177–184 (2016). https://doi.org/10.1007/s12668-016-0205-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0205-1

Keywords

Navigation