Abstract
In this report, the thermal and ultrasonication approach was investigated for the synthesis of silver nanoparticles (AgNPs) using Ficus carica (Fig) fruit extract and the results were compared. The AgNPs were characterized using UV–visible spectroscopy, Transmission electron microscopy, dynamic light scattering, and X-ray diffraction and further evaluated their antioxidant activity. Various analytical characterizations showed that thermal and ultrasonication approaches can reduce Ag+ ions to AgNPs at λ max = 430–440 and 430–435 nm, with diameters around 20–80 nm and 10–30 nm, respectively. However, AgNPs synthesized by thermal heating were spherical, with bigger size, and aggregated, whereas ultrasonication can produce spherical, smaller size, and non-aggregated AgNPs. At lower concentrations (40 μg/mL), it showed enhanced antioxidant activity in comparison to the F. carica fruit extract (AgNPsultrasonication, 34.99 % > AgNPsthermal, 21.59 % > F. carica fruit extract, 15.47 %) against 1,1-diphenyl-2-picrylhydrazyl (DPPH·). This simple and environmentally safe biosynthetic approach for AgNPs is attractive and can produce size-controlled AgNPs of utility for various nanomedicine concerns.

Schematic illustration of the green synthesis of silver nanoparticles under thermal and ultrasonication approach
This is a preview of subscription content, access via your institution.






References
Ghaedi, M., Yousefinejad, M., Safarpoor, M., Zare Khafri, H., Purkait, M. K. (2015). Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. Journal of Industrial and Engineering Chemistry, 31, 167–172.
Singh, M., Manikandan, S., Kumaraguru, A. K. (2010). Nanoparticles: a new technology with wide applications. Research Journal of Nanoscience and Nanotechnology, 1(1), 1–11.
Chernousova, S., & Epple, M. (2013). Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie International Edition, 52(6), 1636–1653.
Rizzello, L., & Pompa, P. P. (2014). Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chemical Society Reviews, 43(5), 1501–1518.
Kumar, B., Smita, K., Cumbal, L., Debut, A. (2014). Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silver nanocatalyst: an ecofriendly approach. Industrial Crops and Products, 58, 238–243.
Li, J., Chen, X., Ai, N., Hao, J., Chen, Q., Strauf, S., et al. (2011). Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells. Chemical Physics Letters, 514, 141–145.
Wei, D., & Qian, W. (2008). Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloid Surface B, 62, 136–142.
Kumar, B., Smita, K., Cumbal, L., Debut, A., Pathak, R.N. (2014). Sonochemical synthesis of silver nanoparticles using starch: a comparison. Bioinorg Chem Appl. Article ID 784268, 8 pages.
Callegari, A., Tonti, D., Chergui, M. (2003). Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Letters, 3, 1565–1568.
Yin, B., Ma, H., Wang, S., Chen, S. (2003). Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). Journal of Physical Chemistry B, 107, 8898–8904.
Raffi, M., Akhter, J. I., Hasan, M. M. (2006). Effect of annealing temperature on Ag nano-composite synthesized by sol–gel. Materials Chemistry and Physics, 99, 405–409.
Kumar, B., Smita, K., Cumbal, L., Debut, A., Pathak, R. N. (2016). Ionic liquid based silica tuned silver nanoparticles: novel approach for fabrication. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. doi:10.1080/15533174.2015.1004451.
Koch, C. C. (1993). The synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review. Nanostructured Materials, 2, 109–129.
Wang, S., Zhang, Y., Ma, H. L., Zhang, Q., Xu, W., Peng, J., et al. (2013). Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon, 55, 245–252.
Mohammadinejad, R., Karimi, S., Iravani, S., Varma, R. S. (2015). Plant-derived nanostructures: types and applications. Green Chemistry. doi:10.1039/c5gc01403d.
Kumar, B., Smita, K., Cumbal, L., Debut, A. (2015). Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci., in press, doi:10.1016/j.sjbs.2015.09.006.
Kumar, B., Smita, K., Cumbal, L., Debut, A. (2014) Sacha inchi (Plukenetia volubilis L.) shell biomass for synthesis of silver nanocatalyst. J. Saudi Chem. Soc., in press, doi: 10.1016/j.jscs.2014.03.005.
Kumar, B., Smita, K., Cumbal, L., Debut, A. (2014). Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi Journal of Biological Sciences, 21(6), 605–609.
Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 22, 577–583.
Kumar, B., Smita, K., Cumbal, L. (2016). Biosynthesis of silver nanoparticles using Lantana camara flower extract and its application. Journal of Sol-Gel Science and Technology. doi:10.1007/s10971-015-3941-8.
Vijayaraghavan, K., Kamala Nalini, S. P., Udaya Prakash, N., Madhankumar, D. (2012). Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Material Letters, 75, 33–35.
Kumar, B., Smita, K., Cumbal, L., Angulo, Y. (2015). Fabrication of silver nanoplates using Nephelium lappaceum (Rambutan) peel: a sustainable approach. Journal of Molecular Liquids, 211, 476–480.
Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chemistry, 10, 859–862.
Mawa, A.S., Husain, K., Jantan, I. (2013). Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evidence-Based Complementary and Alternative Medicine, volume 2013, Article ID 974256, 8 pages.
Guarrera, P. M. (2005). Traditional phytotherapy in central Italy (Marche, Abruzzo, and Latium). Fitoterapia, 76(1), 1–25.
Kumar, B., Smita, K., Cumbal, L., Debut, A. (2015). Ultrasound agitated phytofabrication of palladium nanoparticles using Andean blackberry leaf and its photocatalytic activity. Journal of Saudi Chemical Society, 19, 574–580.
Papavassiliou, G. C. (1979). Optical properties of small inorganic and organic metal particles. Progress in Solid State Chemistry, 12, 185–271.
Zareab, D., Khoshnevisanb, K., Barkhibc, M., Tahami, H. V. (2014). Fabrication of capped gold nanoparticles by using various amino acids. Journal of Experimental Nanoscience, 9(9), 957–965.
Kumar, B., Angulo, Y., Smita, K., Cumbal, L., Debut, A. (2015). Capuli (Prunus serotina Ehrh. var. Capuli) cherry-mediated green synthesis of silver nanoparticles under white solar and blue LED light: a comparison. Particuology, in press, doi:10.1016/j.partic.2015.05.005.
Kanipandian, N., Kannan, S., Ramesh, R., Subramanian, P., Thirumurugan, R. (2014). Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Materials Research Bulletin, 49, 494–502.
Acknowledgments
This scientific work has been funded by the Universidad de las Fuerzas Armadas ESPE and Prometeo Project of the National Secretariat of Higher Education, Science, Technology and Innovation (SENESCYT), Ecuador.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no competing interests.
Rights and permissions
About this article
Cite this article
Kumar, B., Smita, K., Cumbal, L. et al. Ficus carica (Fig) Fruit Mediated Green Synthesis of Silver Nanoparticles and its Antioxidant Activity: a Comparison of Thermal and Ultrasonication Approach. BioNanoSci. 6, 15–21 (2016). https://doi.org/10.1007/s12668-016-0193-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12668-016-0193-1
Keywords
- Ultrasonication
- Ficus carica
- Silver nanoparticles
- TEM
- Antioxidant activity