, Volume 6, Issue 1, pp 47–53 | Cite as

AFM Observation of Heightened Cell Periphery of High-Grade Glioblastoma Cell Lines

  • James R. Smith
  • Zaynah Maherally
  • Samantha C. Higgins
  • Qian An
  • Helen L. Fillmore
  • Geoffrey J. Pilkington


Glioblastoma multiforme (GBM) is a highly invasive (WHO grade IV) brain tumour that has a very poor prognosis for patients with the condition (median survival 14.2 months). Quantitative Imaging (QI)® mode atomic force microscopy (AFM) was used to measure the heights of the leading-edge cell peripheries, the lamellipodia, of two such cell lines (SNB-19 and UP-007), together with those from non-neoplastic astrocyte control cells (CC-2565 and SC-1800) and from a low-grade (WHO grade I) glioma cell line (SEBTA-048). The lamellipodia heights of the glioma cells SNB-19 and UP-007 were 2.45 ± 0.59 and 1.57 ± 0.42 μm, respectively, which were higher than those of the CC-2565 and SC-1800 cells (1.03 ± 0.58 and 0.85 ± 0.40 μm, respectively; p < 0.0001, except between CC-2565 and UP-007, p < 0.001). Lamellipodia height differences between the two glioma cell lines (p < 0.0001) might be attributed to the measured difference in invasive potential between these two cell lines. The equivalent lamellipodia height of the SEBTA-048 cells was 1.16 ± 0.48 μm, the same as that of the astrocytes (p > 0.05) but lower than those of the high-grade gliomas (p < 0.0001 and p < 0.01 for SNB-19 and UP-007, respectively). These measured heights, therefore, may provide new insights for monitoring and controlling cellular invasion in brain tumours.


Glioblastoma multiforme (GBM) Brain tumour Invasion Cytoskeleton Lamellipodia Atomic force microscopy (AFM) 



We thank Drs. Robert Field and Alex Winkle from JPK Instruments, Cambridge, UK, for loan of the NanoWizard 3 AFM instrument, and Brain Tumour Research for support. We also thank Prof. Keyoumars Ashkan and Dr. Stavros Polyzoidis, of the Department of Neurosurgery, King’s College Hospital, London, UK, for providing the brain tumour biopsy sample for establishment as a primary cell line (SEBTA-048).

Compliance with Ethical Standards

Ethics Statement

All cell lines established in-house were conducted in accordance with the National Research Ethics Service (NRES) instructions and under ethics permission 11/SC/0048.


  1. 1.
    Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., et al. (2007). The 2007 WHO Classification of tumours of the central nervous system. Acta Neuropathologica, 114, 97–109. doi: 10.1007/s00401-007-0243-4.CrossRefGoogle Scholar
  2. 2.
    Hoa, V. K. Y., Reijneveld, J. C., Enting, R. H., Bienfait, H. P., Robe, P., Baumert, B. G., et al. (2014). Changing incidence and improved survival of gliomas. European Journal of Cancer, 50, 2309–2318. doi: 10.1016/j.ejca.2014.05.019.CrossRefGoogle Scholar
  3. 3.
    Cross, S. E., Jin, Y. S., Rao, J., Gimzewski, J. K. (2007). Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology, 2, 780–783. doi: 10.1038/nnano.2007.388.CrossRefGoogle Scholar
  4. 4.
    Docheva, D., Padula, D., Schieker, M., Clausen-Schaumann, H. (2010). Effect of collagen I and fibronectin on the adhesion, elasticity and cytoskeletal organization of prostate cancer cells. Biochemical and Biophysical Research Communications, 402, 361–366. doi: 10.1016/j.bbrc.2010.10.034.CrossRefGoogle Scholar
  5. 5.
    Wang, B., Lancon, P., Bienvenu, C., Vierling, P., Di Giorgio, C., Bossis, G. (2013). A general approach for the microrheology of cancer cells by atomic force microscopy. Micron, 44, 287–297. doi: 10.1016/j.micron.2012.07.006.CrossRefGoogle Scholar
  6. 6.
    Vadillo-Rodriguez, V., & Dutcher, J. R. (2009). Dynamic viscoelastic behavior of individual Gram-negative bacterial cells. Soft Matter, 5, 5012–5019. doi: 10.1039/b912227c.CrossRefGoogle Scholar
  7. 7.
    Maherally, Z., Smith, J. R., An, Q., Pilkington, G. J. (2012). Receptors for hyaluronic acid and poliovirus: a combinatorial role in glioma invasion? PLoS One, 7, e30691. doi: 10.1371/journal.pone.0030691.CrossRefGoogle Scholar
  8. 8.
    Maherally, Z., Smith, J. R., Ghoneim, M. K., Dickson, L., An, Q., Fillmore, H. L., Pilkington, G. J. (2015). Silencing of CD44 in glioma leads to changes in cytoskeletal protein expression and cellular biomechanical deformation properties as measured by AFM nanoindentation. BioNanoScience, 1–11. doi: 10.1007/s12668-015-0189-2.
  9. 9.
    Romet-Lemonne, G., & Jégou, A. (2013). Mechanotransduction down to individual actin filaments. European Journal of Cell Biology, 92, 333–338. doi: 10.1016/j.ejcb.2013.10.011.CrossRefGoogle Scholar
  10. 10.
    Ridley, A. J. (2011). Life at the leading edge. Cell, 145, 1012–1022. doi: 10.1016/j.cell.2011.06.010.CrossRefGoogle Scholar
  11. 11.
    Svitkina, T. M., & Borisy, G. G. (1999). Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. Journal of Cell Biology, 145, 1009–1026. doi: 10.1083/jcb.145.5.1009.CrossRefGoogle Scholar
  12. 12.
    Yamada, H., Ade, T., Li, S.-A., Masuoka, Y., Isoda, M., Watanabe, M., et al. (2015). Dynasore, a dynamic inhibitor, suppresses lamellipodia formation and cancer cell invasion by destabilizing actin filaments. Biochemical and Biophysical Research Communications, 390, 1142–1148. doi: 10.1016/j.bbrc.2009.10.105.CrossRefGoogle Scholar
  13. 13.
    Chopinet, L., Formosa, C., Rols, M. P., Duval, R. E., Dague, E. (2013). Imaging living cells surface and quantifying its properties at high resolution using AFM in QI™ mode. Micron, 48, 26–33. doi: 10.1016/j.micron.2013.02.003.CrossRefGoogle Scholar
  14. 14.
    An, Q., Fillmore, H. L., Vouri, M., Pilkington, G. J. (2014). Brain tumour cell line authentication, an efficient alternative to capillary electrophoresis by using a microfluidics-based system. Neurooncology, 16, 265–273. doi: 10.1093/neuonc/not202.Google Scholar
  15. 15.
    Pilkington, G. J., Akinwunmi, J., Ognjenovic, N., Rogers, J. P. (1993). Differential binding of anti-CD44 on human gliomas in vitro. Neuroreport, 4, 259–262. doi: 10.1097/00001756-199303000-00008.CrossRefGoogle Scholar
  16. 16.
    Hutter, J. L., & Bechhoefer, J. (1993). Calibration of atomic-force microscope tips. Review of Scientific Instruments, 64, 1868–1873. doi: 10.1063/1.1143970.CrossRefGoogle Scholar
  17. 17.
    Fillmore, H. L., Chasiotis, I., Cho, S. W., Gillies, G. T. (2003). Atomic force microscopy observations of tumour cell invadopodia: novel cellular nanomorphologies on collagen substrates. Nanotechnology, 14, 73–76. doi: 10.1088/0957-4484/14/1/317.CrossRefGoogle Scholar
  18. 18.
    Chasiotis, I., Fillmore, H. L., Gillies, G. T. (2003). Atomic force microscopy measurement of cytostructural elements involved in the nanodynamics of tumour cell invasion. Nanotechnology, 14, 557–561. doi: 10.1088/0957-4484/14/5/314.CrossRefGoogle Scholar
  19. 19.
    D’Agostino, D. P., Olson, J. E., Dean, J. B. (2009). Acute hyperoxia increases lipid peroxidation and induces plasma membrane blebbing in human U87 glioblastoma cells. Neuroscience, 159, 1011–1022. doi: 10.1016/j.neuroscience.2009.01.062.CrossRefGoogle Scholar
  20. 20.
    Selmeczi, D., Szabo, B., Sajo-Bohus, L., Rozlosnik, N. (2001). Morphological changes in living cell cultures following α-particle irradiation studied by optical and atomic force microscopy. Radiation Measurement, 34, 549–553. doi: 10.1016/S1350-4487(01)00226-8.CrossRefGoogle Scholar
  21. 21.
    Bastatas, L., Martinez-Marin, D., Matthews, J., Hashem, J., Lee, Y. J., Sennoune, S., et al. (2012). AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential. Biochimica et Biophysica Acta, 1820, 1111–1120. doi: 10.1016/j.bbagen.2012.02.006.CrossRefGoogle Scholar
  22. 22.
    Zhang, X., Tang, Q., Wu, L., Huang, J., Chen, Y. (2015). AFM visualization of cortical filaments/network under cell-bound membrane vesicles. Biochimica et Biophysica Acta, 1848, 2225–2232. doi: 10.1016/j.bbamem.2015.06.025.CrossRefGoogle Scholar
  23. 23.
    Birukova, A. A., Arce, F. T., Moldobaeva, N., Dudek, S. M., Garcia, J. G. N., Lal, R., et al. (2009). Endothelial permeability is controlled by spatially defined cytoskeletal mechanics: atomic force microscopy force mapping of pulmonary endothelial monolayer. Nanomedicine: Nanotechnology, Biology and Medicine, 5, 30–41. doi: 10.1016/j.nano.2008.07.002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • James R. Smith
    • 1
  • Zaynah Maherally
    • 1
  • Samantha C. Higgins
    • 1
  • Qian An
    • 1
  • Helen L. Fillmore
    • 1
  • Geoffrey J. Pilkington
    • 1
  1. 1.Cellular and Molecular Neuro-oncology Research Group, School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK

Personalised recommendations