, Volume 5, Issue 1, pp 48–54 | Cite as

Separation of Microvesicles from Serological Samples Using Deterministic Lateral Displacement Effect

  • András J. Laki
  • Lilla Botzheim
  • Kristóf Iván
  • Viola Tamási
  • Pierluigi Civera


Label-free isolation and detection of extracellular vesicles are essential in many diagnostic and therapeutic approaches. Recently, there has been an interest in methods that avoid the use of biochemical labels, intrinsic biomarkers, or electrical polarizability to identify microvesicles (also referred to as microparticles) from serological samples. Here, we report a microfluidic device to separate circulating extracellular vesicles from serological samples using the deterministic lateral displacement principle. The device continuously fractionates label-free extracellular vesicles and cells according to size and membrane flexibility by displacing them perpendicularly to the fluid flow direction in a micro-fabricated array of posts. Experimental data and computational fluid dynamic simulations are presented to create a compelling argument that microvesicles from serological samples could be separated by deterministic lateral displacement arrays. Direct separation of different-sized micro- and nanospheres were demonstrated using a multi-stage separation strategy thus offering a potential route for novel cancer diagnostic approaches where microvesicles can be targeted and intercepted during cell-to-cell communication.


Lab-on-a-chip Label-free fractionation techniques Deterministic lateral displacement 



We would like to express our gratitude to Péter Fürjes (MEMS Laboratory, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest) for his kind help. The support of grants TÁMOP-4.2.1.B-11/2/KMR-2011-0002 and TÁMOP-4.2.2/B-10/1-2010-0014, OTKA 84043 are gratefully acknowledged.


  1. 1.
    György, B., Szabó, T.G., Pásztói, M., Pál, Z., Misják, P., Aradi, B., László, V., Pállinger, E., Pap, E., Kittel, A., Nagy, G., Falus, A., Buzás, E.I. (2011). Cellular and molecular life sciences: CMLS, 68(16), 2667. doi: 10.1007/s00018-011-0689-3. PMID: 21560073.CrossRefGoogle Scholar
  2. 2.
    D’Souza-Schorey, C., & Clancy, J.W. (2012). Genes & development, 26(12), 1287. doi: 10.1101/gad.192351.112. PMID: 22713869. URL Scholar
  3. 3.
  4. 4.
    Hou, H.W., Bhagat, A.A.S., Lee, W.C., Huang, S., Han, J., Lim, C.T. (2011). Micromachines, 2(3), 319. doi: 10.3390/mi2030319. Scholar
  5. 5.
    Théry, C., Amigorena, S., Raposo, G., Clayton, A. (2006) In Bonifacino, J.S., Dasso, M., Harford, J.B., Lippincott-Schwartz, J., Yamada, K.M. (Eds.), Current protocols in cell biology. Hoboken: John Wiley & Sons.
  6. 6.
    Lamparski, H.G., Metha-Damani, A., Yao, J.Y., Patel, S., Hsu, D.H., Ruegg, C., Le Pecq, J.B. (2002). Journal of immunological methods, 270(2), 211. doi: 10.1016/S0022-1759(02)00330-7. Scholar
  7. 7.
    Chen, C., Skog, J., Hsu, C.H., Lessard, R.T., Balaj, L., Wurdinger, T., Carter, B.S., Breakefield, X.O., Toner, M., Irimia, D. (2010). Lab on a chip, 10(4), 505. doi: 10.1039/B916199F. Scholar
  8. 8.
    Huang, L.R., Cox, E.C., Austin, R.H., Sturm, J.C. (2004). Science, 304(5673), 987. doi: 10.1126/science.1094567. PMID: 15143275. Scholar
  9. 9.
    Morton, K.J., Loutherback, K., Inglis, D.W., Tsui, O.K., Sturm, J.C., Chou, S.Y., Austin, R.H. (2008). Lab on a chip, 8(9), 1448. doi: 10.1039/B805614E. URL Scholar
  10. 10.
    Davis, J.A., Inglis, D.W., Morton, K.J., Lawrence, D.A., Huang, L.R., Chou, S.Y., Sturm, J.C., Austin, R.H. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103(40), 14779. doi: 10.1073/pnas.0605967103. PMID: 17001005.CrossRefGoogle Scholar
  11. 11.
    Beech, J.P., Holm, S.H., Adolfsson, K., Tegenfeldt, J.O. (2012). Lab on a chip, 12(6), 1048. doi: 10.1039/c2lc21083e. PMID: 22327631.CrossRefGoogle Scholar
  12. 12.
    Inglis, D.W., Morton, K.J., Davis, J.A., Zieziulewicz, T.J., Lawrence, D.A., Austin, R.H., Sturm, J.C. (2008). Lab on a chip, 8(6), 925. doi: 10.1039/B800721G. Scholar
  13. 13.
    Gleghorn, J.P., Pratt, E.D., Denning, D., Liu, H., Bander, N.H., Tagawa, S.T., Nanus, D.M., Giannakakou, P.A., Kirby, B.J. (2010). Lab on a chip, 10(1), 27. doi: 10.1039/B917959C. Scholar
  14. 14.
    Holm, S.H., Beech, J.P., Barrett, M.P., Tegenfeldt, J.O. (2011). Lab on a chip, 11(7), 1326. doi: 10.1039/c0lc00560f. PMID: 21331436.CrossRefGoogle Scholar
  15. 15.
    Inglis, D.W., Davis, J.A., Austin, R.H., Sturm, J.C. (2006). Lab on a chip, 6(5), 655. doi: 10.1039/B515371A. URL Scholar
  16. 16.
    Bonadonna, C., Ernst, G.G.J., Sparks, R.S.J. (1998). Journal of volcanology and geothermal research, 81(34), 173. doi: 10.1016/S0377-0273(98)00007-9. Scholar
  17. 17.
    Duffy, D.C., McDonald, J.C., Schueller, O.J.A., Whitesides, G.M. (1998). Analytical chemistry, 70(23), 4974. doi: 10.1021/ac980656z.CrossRefGoogle Scholar
  18. 18.
    McDonald, J.C., & Whitesides, G.M. (2002). Accounts of chemical research, 35(7), 491. doi: 10.1021/ar010110q.CrossRefGoogle Scholar
  19. 19.
    Turiák, L., Misják, P., Szabó, T.G., Aradi, B., Pálóczi, K., Ozohanics, O., Drahos, L., Kittel, A., Falus, A., Buzás, E.I., Vákey, K. (2011). Journal of proteomics, 74(10), 2025. doi: 10.1016/j.jprot.2011.05.023. PMID: 21635979.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • András J. Laki
    • 1
    • 3
  • Lilla Botzheim
    • 1
  • Kristóf Iván
    • 1
  • Viola Tamási
    • 2
  • Pierluigi Civera
    • 3
  1. 1.Faculty of Information Technology and BionicsPázmány Péter Catholic UniversityBudapestHungary
  2. 2.Department of Genetics, Cell- and ImmunobiologySemmelweis UniversityBudapestHungary
  3. 3.Department of Electronics and TelecommunicationsPolytechnic University of TurinTurinItaly

Personalised recommendations