Nanophotonic Biosensor Technologies for Lab on Chip Applications—a Focus Article on Optical Biosensors from Three EC Lab on Chip Projects with a Comparison to the State of Art


This paper compares the performances of various nanophotonic biosensors developed in three recent European Lab-on-Chip collaborations: SABIO, INTOPSENS and POSITIVE. These are attractive for biosensing due to their small footprint, high Q-factors and compatibility with on-chip optics and microfluidics enabling integrated sensor arrays for compact lab-on-chip (LOC) applications. Many applications typically require the addressing of a number of issues including: improving limit of detection, managing the influence of temperature, parallelization of the measurement for higher throughput and on-chip referencing, efficient light-coupling strategies to simplify alignment, and packaging of the nanophotonics chip and integration with microfluidics. For ring resonator-based sensors, volumetric sensitivities of 246 nm/RIU and 2169 nm/RIU and limits of detection of 5 × 10−6 RIU and 8.3 × 10−6 RIU were reported from SABIO (at 1.3 μm) and INTOPSENS (at 1.5 μm), respectively. For SABIO, this was for an eight-channel Si3N4 slot-waveguide ring resonator sensor array whilst for INTOPSENS this was for an individual Si Vernier cascade sensor. In POSITIVE for porous alumina-based membrane sensors, a volumetric limit of detection (LOD) was reported at 5 × 10−6 RIU but more importantly, in contrast to the sensors from the other two projects, the standard deviation of the measured values was below 5 %, sensing response times were fast and small sample volumes could be used (<100 μl). For biosensing within SABIO, a surface limit of detection of 0.9 pg/mm2 for anti-BSA on a gluteraldehyde-covered surface was recorded corresponding to a 125 ng/ml anti-BSA solution, whilst Si slot-waveguide ring resonators have reported 2 pg/mm2 and 10 ng/ml for biotin on a streptavidin-coated surface. In contrast, in POSITIVE, for an assay of β-lactoglobulin-anti-β-lactoglobulin-anti-rabbit-IgG-streptavidin-conjugated CdSe quantum dots, a noise floor for individual measurements of 3.7 ng/ml (25 pM) was obtained, with an overall statistical, or formal assay LOD of 33.7 ng/ml (225 pM), for total assay times of under 1 h. With similar volumetric limits of detection, the sensors are still poorer than that of the state of art in nanophotonic sensors; however, the POSITIVE device compared favourably to it at least for total assay times, response times and minimum volumes of analyte necessary.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Janasek, D., Franzke, J., Manz, A. (2006). Scaling and the design of miniaturized chemical-analysis systems. Nature, 442, 374–380.

    Article  Google Scholar 

  2. 2.

    Markov, D., Begari, D., Bornhop, D. J. (2002). Breaking the 10–7 barrier for RI measurements in nanoliter volumes. Analytical Chemistry, 74, 5438–5441.

    Article  Google Scholar 

  3. 3.

    Zinoviev, K., Carrascosa, L. G., Sánchez del Río, J., Sepúlveda, B., Domínguez, C., Lechuga L. M.

  4. 4.

    De Feijter, J. A., Benjamins, J., Veer, F. A. (1978). Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface. Biopolymers, 17(7), 1759–1772.

    Article  Google Scholar 

  5. 5.

    Karlsson, R., Michaelsson, A., Mattsson, L. (1991). Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. Journal of Immunological Methods, 145, 229–240.

    Article  Google Scholar 

  6. 6.

    Hill, D. (2011). Nanophotonic and microfluidic technologies for Label Free Lab on Chip devices. BioNanoScience, 1, 162.

    Article  Google Scholar 

  7. 7.

    Tiefenthaler, K., & Lukosz, W. (1984). Integrated optical switches and gas sensors. Optics Letters, 9, 137–139.

    Article  Google Scholar 

  8. 8.

    Lukosz, W., & Tiefenthaler, K. (1988). Sensitivity of integrated optical grating and prism couplers as (bio)chemical sensors. Sensors and Actuators, 15(3), 273–284.

    Article  Google Scholar 

  9. 9.

    Tiefenthaler, K., & Lukosz, W. (1989). Sensitivity of grating couplers as integrated optical chemical sensors. Journal of the Optical Society of America B: Optical Physics, 6(2), 209–220.

    Article  Google Scholar 

  10. 10.

    Almeida, V. R., Xu, Q., Barrios, C. A., Lipson, M. (2004). Guiding and confining light in void nanostructure. Optics Letters, 29(11), 1209–1211.

    Article  Google Scholar 

  11. 11.

    Xu, Q., Almeida, V. R., Panepucci, R. R., Lipson, M. (2004). Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Optics Letters, 29(14), 1626–1628.

    Article  Google Scholar 

  12. 12.

    Sohlström, H., Gylfason, K., Hill, D. (2010). Real-time label-free biosensing with integrated planar waveguide ring-resonators. Proceedings of SPIE, 7719, 77190B.

    Article  Google Scholar 

  13. 13.

    Gylfason, K. G., Carlborg, C. F., Kazmierczak, A., Dortu, F., Sohlström, H., Vivien, L., et al. (2010). On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array. Optics Express, 18(4), 3226–3237.

    Article  Google Scholar 

  14. 14.

    Carlborg, C. F., Gylfason, K. B., Kamierczak, A., Dortu, F., Bañuls Polo, M. J., Maquieira Catala, A., et al. (2010). A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab on a Chip, 10, 281–290.

    Article  Google Scholar 

  15. 15.

    Kazmierczak, A., Dortu, F., Schrevens, O., Giannone, D., Vivien, L., Morini, D. M., et al. (2009). Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system. Optical Engineering, 48(1), 014401.

    Article  Google Scholar 

  16. 16.

    De Vos, K., Bartolozzi, I., Schacht, E., Bienstman, P., Baets, R. (2007). Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Optics Express, 15(12), 7610–7615.

    Article  Google Scholar 

  17. 17.

    Claes, T., Molera, J. G., De Vos, K., Schacht, E., Baets, R., Bienstman, P. (2009). Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics Journal, 1(3), 197–204.

    Article  Google Scholar 

  18. 18.

    Gylfason, K. B. (2010). Integrated optical slot-waveguide ring resonator sensor arrays for lab-on-chip applications, PhD Thesis TRITA-EE 2010:012. Stockholm: KTH-Royal institute of Technology.

    Google Scholar 

  19. 19.

    Claes, T., Bogaerts, W., Bienstman P. (2010). Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Vol. 18, No. 22 / Optics Express 22747.

  20. 20.

    Lazzara, T. D., Mey, I., Steinem, C., Janshoff, A. (2011). Benefits and limitations of porous substrates as biosensors for protein adsorption. Analytical Chemistry, 83(14), 5624–5630.

    Article  Google Scholar 

  21. 21.

    Álvarez, J., Sola, L., Platt, G., Cretich, M., Swann, M., Chiari, M., Hill, D., Martínez-Pastor J. (2013). Real-time polarimetric biosensing using macroporous alumina membranes. Proc. SPIE 8765, Bio-MEMS and Medical Microdevices, 87650I.

  22. 22.

    Álvarez, J., Sola, L., Cretich, M., Swann, M. J., Gylfason, K. B., Volden, T., et al. (2014). Real time optical immunosensing with flow through porous alumina membranes. Journal of Sensors and Actuators B. doi:10.1016/j.snb.2014.06.027.

    Google Scholar 

  23. 23.

    Platt, G. W., Damin, F., Swann, M. J., Metton, I., Skorski, G., Cretich, M., et al. (2014). Allergen immobilisation and signal amplification by quantum dots for use in a biosensor assay of IgE in serum. Biosensors and Bioelectronics, 52, 82–88.

    Article  Google Scholar 

  24. 24.

    Cretich, M., Breda, M., Damin, D., Borghi, F., Sola, M., Unlu, S. M., … Chiari, M. (2010). Allergen microarrays on high-sensitivity silicon slides. Analytical and Bioanalytical Chemistry, 398(4), 1723–1733.

  25. 25.

    Álvarez, J., Sola, L., Cretich, M., Swann, M. J., Volden, T., Chiari, M., Hill, D. Characterisation of porous alumina membranes for efficient, real-time, flow through biosensing. Unpublished.

  26. 26.

    Álvarez, J., Serrano, C., Hill, D., Martínez-Pastor, J. (2013). Real-time polarimetric optical sensor using macroporous alumina membranes. Optics Letters, 38(7), 1058–1060.

    Article  Google Scholar 

  27. 27.

    Iqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., et al. (2010). Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE Journal of Selected Topics In Quantum Electronics, V16, 3.

    Google Scholar 

Download references


As project manager of all three projects there are many contributors with whom I have worked directly and am most grateful for their efforts. I thank Jesus Alvarez, Hans Sohlström and Kristinn Gylfason for their photonics contributions in both SABIO and POSITIVE. Other direct contributors to the SABIO work summarized here are Andrzej Kaźmierczak, Fabien Dortou, Laurent Vivien, Jon Popplewell, Gerry Ronan and Carlos A. Barrios. Other direct contributors to the INTOPSENS work summarized here include Tom Claes and Peter Bienstman. Further direct contributors from the POSITIVE project for article include Marcus J Swann, Laura Sola, Marina Cretich, Marcella Chiari and Tormod Volden. As I review the collaborative projects SABIO, INTOPSENS and POSITIVE, many others have contributed.

Author information



Corresponding author

Correspondence to Daniel Hill.

Additional information

The work reported here was financed by the European Commission through the sixth framework project FP6-IST-SABIO, and the seventh framework projects FP7-ICT-INTOPSENS and FP7-ICT-POSITIVE, respectively.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hill, D. Nanophotonic Biosensor Technologies for Lab on Chip Applications—a Focus Article on Optical Biosensors from Three EC Lab on Chip Projects with a Comparison to the State of Art. BioNanoSci. 4, 329–334 (2014).

Download citation


  • Nanophotonics
  • Slot-waveguides
  • Ring resonators
  • Porous silicon
  • Biosensing
  • Lab-on-chip
  • Birefringence
  • Quantum dots