Skip to main content
Log in

Superhydrophobic and Self-cleaning Macrosize Surfaces of Silicone Rubber and Its Mechanical Flexibility

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Biologically inspired superhydrophobic and self-cleaning surfaces similar to a lotus leaf are of great interest for waterproof passivation in electronics as well as the different types of device applications, such as microfluidics and bacteria controls. This study describes quick one-step laser-treated superhydrophobic and self-cleaning surfaces of elastomer silicone rubber and its mechanical flexibility. By studying the contact and sliding angles with different geometries of silicone rubber and tensile strain conditions, models to realize superhydrophobic and self-cleaning surfaces are discussed. Additionally, a microfluidic valve as a proof-of-concept application to a total analysis system is demonstrated in addition to the application of waterproof passivation layer. Because this approach is a simple method, it has great potential for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Takei, K., Takahashi, T., Ho, J. C., et al. (2010). Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials, 9, 821–826.

    Article  Google Scholar 

  2. Someya, T., Kato, Y., Sekitani, T., et al. (2005). Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proceedings of the National Academy of Sciences of the United States of America, 102, 12321–12325.

    Article  Google Scholar 

  3. Takei, K., Yu, Z., Zheng, M., et al. (2014). Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proceedings of the National Academy of Sciences of the United States of America, 111, 1703–1707.

    Article  Google Scholar 

  4. Harada, S., Honda, W., Arie, T., Akita, S. (2014). Fully printed, highly sensitive multi-functional artificial electronic whisker arrays integrated with strain and temperature sensors. ACS Nano, 8, 3921–3927.

    Article  Google Scholar 

  5. Sun, D., Timmermans, M. Y., Tian, Y., et al. (2011). Flexible high-performance carbon nanotube integrated circuits. Nature Nanotechnology, 6, 156–161.

    Article  Google Scholar 

  6. Cao, Q., Kim, H., Pimparkar, N., et al. (2008). Medium-scale carbon nanotube thin-film integrated circuit on flexible plastic substrates. Nature, 454, 495–500.

    Article  Google Scholar 

  7. Dagdeviren, C., Yang, B. D., Su, Y., et al. (2014). Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the National Academy of Sciences of the United States of America, 111, 1927–1932.

    Article  Google Scholar 

  8. Honda, W., Harada, S., Arie, T., Akita, S., Takei, K. (2014). Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Advanced Functional Materials, 24, 3299–3304.

    Article  Google Scholar 

  9. Zhang, X., Yu, Z., Wang, C., Zarrouk, D., Seo, J.-W. T., Cheng, J. C., et al. (2014). Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nature Communications, 5, 2983. doi:10.1038/ncomms3983.

    Google Scholar 

  10. Ko, H., Zhang, Z., Chueh, Y.-L., et al. (2009). Wet and dry adhesion properties of self-selective nanowire connectors. Advanced Functional Materials, 19, 3098–3102.

    Article  Google Scholar 

  11. Tsui, K.-H., Lin, Q., Chou, H., et al. (2014). Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics. Advanced Materials, 26, 2805–2811.

    Article  Google Scholar 

  12. Ivanova, E. P., Hasan, J., Webb, H. K., et al. (2013). Bactericidal activity of black silicon. Nature Communications, 4, 2838. doi:10.1038/ncomms3838.

    Article  Google Scholar 

  13. Jin, M., Feng, X., Xi, J., et al. (2005). Super-hydrophobic PDMS surface with ultra-low adhesive force. Macromolecular Rapid Communications, 26, 1805–1809.

    Article  Google Scholar 

  14. Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1–8.

    Article  Google Scholar 

  15. Roach, P., Shirtcliffe, N. J., Newton, M. I. (2008). Progress in superhydrophobic surface development. Soft Matter, 4, 224–240.

    Article  Google Scholar 

  16. Yoshimitsu, Z., Nakajima, A., Watanabe, T., Hashimoto, K. (2002). Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir, 18, 5815–5822.

    Article  Google Scholar 

  17. Shirtcliffe, N. J., McHale, G., Newton, M. I., Perry, C. C. (2005). Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Langmuir, 21, 937–943.

    Article  Google Scholar 

  18. Furstner, R., & Barthlott, W. (2005). Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir, 21, 956–961.

    Article  Google Scholar 

  19. Spori, D. M., Drobek, T., Zurcher, S., et al. (2008). Beyond the lotus effect: roughness influences on wetting over a wide surface-energy range. Langmuir, 24, 5411–5417.

    Article  Google Scholar 

  20. Huang, X.-J., Lee, J.-H., Lee, J.-W., Yoon, J.-B., Choi, Y.-K. (2008). A one-step route to a perfectly ordered wafer-scale microbowl array for size-dependent superhydrophobicity. Small, 4, 211–216.

    Article  Google Scholar 

  21. Ko, H., Zhang, Z., Takei, K., Javey, A. (2010). Hierarchical polymer micropillar arrays decorated with ZnO nanowires. Nanotechnology, 21, 295305.

    Article  Google Scholar 

  22. Feng, L., Li, S., Li, H., et al. (2002). Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angewandte Chemie International Edition, 41, 1221–1223.

    Article  Google Scholar 

  23. Tokudome, Y., Okada, K., Nakahira, A., Takahashi, M. (2014). Switchable and reversible water adhesion on superhydrophobic titanate nanostructures fabricated on soft substrates: photopatternable wettability and thermomodulatable adhesivity. Journal of Materials Chemistry A, 2, 58–61.

    Article  Google Scholar 

  24. Sun, T., Tan, H., Han, D., Fu, Q., Jiang, L. (2005). No platelet can adhere-largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small, 1, 959–963.

    Article  Google Scholar 

  25. Yong, J., Chen, F., Yang, Q., et al. (2013). Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion. Journal of Physical Chemistry C, 117, 24907–24912.

    Article  Google Scholar 

  26. Khorasani, M. T., Mirzadeh, H., Sammes, P. G. (1996). Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material. Radiation Physics and Chemistry, 47, 881–888.

    Article  Google Scholar 

  27. Khorasani, M. T., & Mirzadeh, H. (2004). In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials. Journal of Applied Polymer Science, 91, 2042–2047.

    Article  Google Scholar 

  28. Nakajima, A., Hashimoto, K., Watanabe, T. (2001). Recent studies on super-hydrophobic films. Monatshefte für Chemie, 132, 31–41.

    Article  Google Scholar 

  29. Nosonovsky, M. (2007). Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir, 23, 3157–3161.

    Article  Google Scholar 

  30. Shirtcliffe, N. J., McHale, G., Newton, M. I., Chabrol, G., Perry, C. C. (2004). Dual-scale roughness produces unusually water-repellent surfaces. Advanced Materials, 16, 1929–1932.

    Article  Google Scholar 

  31. Schirrer, R., & Thepin, P. (1992). Water absorption, swelling, rupture and salt release in salt-silicone rubber compounds. Journal of Materials Science, 27, 3424–3434.

    Article  Google Scholar 

  32. Fedors, R. F. (1980). Osmotic effects in water absorption by polymers. Polymer, 21, 207–212.

    Article  Google Scholar 

  33. Hillborg, H., & Gedde, U. W. (1999). Hydrophobicity changes in silicone rubbers. IEEE Transactions on Dielectrics and Electrical Insulation, 6, 703–717.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Mazda Foundation, the Foundation Advanced Technology Institute (ATI), and the JSPS KAKENHI Grant (#25889048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniharu Takei.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4926 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, S., Arie, T., Akita, S. et al. Superhydrophobic and Self-cleaning Macrosize Surfaces of Silicone Rubber and Its Mechanical Flexibility. BioNanoSci. 4, 301–305 (2014). https://doi.org/10.1007/s12668-014-0146-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-014-0146-5

Keywords

Navigation