Sant, M., Allemani, C., Tereanu, C., De Angelis, R., Capocaccia, R., Visser, O., et al. (2010). Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood, 116, 3724–3734. doi:10.1182/blood-2010-05-282632.
Article
Google Scholar
Paietta, E. (2012). Minimal residual disease in acute myeloid leukemia: coming of age. Hematalogy, ASH Education Book, 2012(1), 35–42. doi:10.1182/asheducation-2012.1.35.
Article
Google Scholar
Estey, E., & Döhner, H. (2006). Acute myeloid leukaemia. Lancet, 368, 1894–1907. doi:10.1016/S0140-6736(06)69780-8.
Article
Google Scholar
Jorgensen, J. L., & Chen, S. S. (2011). Monitoring of minimal residual disease in acute myeloid leukemia: methods and best applications. Clinical Lymphoma, Myeloma & Leukemia, 11(Suppl 1), S49–S53. doi:10.1016/j.clml.2011.03.023.
Article
Google Scholar
Buccisano, F., Maurillo, L., Del Principe, M. I., et al. (2012). Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood, 119, 332–341. doi:10.1182/blood-2011-08-363291.
Article
Google Scholar
Steinbach, D., & Debatin, K.-M. (2008). What do we mean by sensitivity when we talk about detecting minimal residual disease? Leukemia, 22, 1638–1639. doi:10.1038/leu.2008.33.
Article
Google Scholar
Ross, D. M., Branford, S., Melo, J. V., Hughes, T. P. (2009). Reply to ‘What do we mean by sensitivity when we talk about detecting minimal residual disease?’. Leukemia, 23(4), 819–820. doi:10.1038/leu.2008.330.
Article
Google Scholar
Rossi, G., Minervini, M. M., Carella, A. M., et al. (2012). Comparison between multiparameter flow cytometry and WT1-RNA quantification in monitoring minimal residual disease in acute myeloid leukemia without specific molecular targets. Leukemia Research, 36(4), 401–406. doi:10.1016/j.leukres.2011.11.020.
Article
Google Scholar
Bergmann, L., Miething, C., Maurer, U., Brieger, J., Karakas, T., Weidmann, E., et al. (1997). High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood, 90, 1217–1225.
Google Scholar
Willasch, A. M., Gruhn, B., Coliva, T., Kalinova, M., Schneider, G., Kreyenberg, H., et al. (2009). High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Leukemia, 23, 1472–1479. doi:10.1038/leu.2009.51.
Article
Google Scholar
Huh, Y. S. (2009). Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluidics and Nanofluidics, 6, 285–297. doi:10.1007/s10404-008-0392-3.
Article
Google Scholar
Lutz, B. R., Dentinger, C. E., Nguyen, N. L., Sun, L., Zhang, J., Allen, A. N., et al. (2008). Spectral analysis of multiplex Raman probe signatures. ACS Nano, 2, 2306–2314. doi:10.1021/nn800243g.
Article
Google Scholar
Cao, Y. C., Jin, R., Mirkin, C. A. (2002). Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 297, 1536–1540. doi:10.1126/science.297.5586.1536.
Article
Google Scholar
Zhang, Y., Huang, Y., Zhai, F., Du, R., Liu, Y., Lai, K. (2012). Analyses of enrofloxacin, furazolidone and malachite green in fish products with surface-enhanced Raman spectroscopy. Food Chemistry, 135, 845–850.
Article
Google Scholar
del Campo, A., Sen, T., Lellouche, J.-P., Bruce, I. J. (2005). Multifunctional magnetite and silica-magnetite nanoparticles: synthesis, surface activation and applications in life sciences. Journal of Magnetism and Magnetic Materials, 293, 33–40. doi:10.1016/j.jmmm.2005.01.040.
Article
Google Scholar
Chowdhurya, M. H., Campbell, C. J., Theofanidou, E., Lee, S. J., Baldwin, A., Sing, G., et al. (2006). Plasmonics in Biology and Medicine III, edited by Vo-Dinh T, Lakowicz JR, Gryczynski Z, Proceedings of SPIE Vol. 6099, 609905, 1605-7422/06/$15 doi:10.1117/12.646464.
Oldenburg, S. J., Averitt, R. D., Westcott, S. L., Halas, N. J. (1998). Nanoengineering of optical resonances. Chemical Physics Letters, 288, 243–247. doi:10.1016/S0009-2614(98)00277-2.
Article
Google Scholar
Frens, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Sciences, 241, 20–21. doi:10.1038/physci241020a0.
Article
Google Scholar
Long, N. N., Vu, L. V., Kiem, C. D., Doanh, S. C., Nguyet, T. C., Hang, P. T., et al. (2009). Synthesis and optical properties of colloidal gold nanoparticles. Journal of Physics: Conference Series, 187, 012026. doi:10.1088/1742-6596/187/1/012026.
Google Scholar
Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics, 17, 1247–1248. doi:10.1109/TMAG.1981.1061188.
Article
Google Scholar
Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R., Mendintz, I. L. (2011). Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Analytical Chemistry, 83, 4453–4488. doi:10.1021/ac200853a.
Article
Google Scholar
Gabert, J., Beillard, E., van der Velden, V. H. J., Bi, W., Grimwade, D., Pallisgaard, N., et al. (2003). Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe against cancer program. Leukemia, 17, 2318–2357. doi:10.1038/sj.leu.2403135.
Article
Google Scholar
Beillard, E., Pallisgaard, N., van der Velden, V. H. J., Bi, W., Dee, R., van der Schoot, E., et al. (2003). Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe against cancer program. Leukemia, 17, 2474–2486. doi:10.1038/sj.leu.2403136.
Article
Google Scholar
Zhang, X., Servos, M. R., Liu, J. (2012). Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. Journal of the American Chemical Society, 134, 7266–7269. doi:10.1021/ja3014055.
Article
Google Scholar
Jubb, A. M., & Allen, H. C. (2010). Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Applaied Materials and Interfaces, 2, 2804–2812. doi:10.1021/am1004943.
Article
Google Scholar
Kouassi, G. K., & Irudayaraj, J. (2006). Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Analytical Chemistry, 78, 3234–3241. doi:10.1021/ac051621j.
Article
Google Scholar
Morasso, C., Mehn, D., Vanna, R., Bedoni, M., Forvi, E., Colombo, M., et al. (2014). One-step synthesis of star-like gold nanoparticles for surface enhanced Raman spectroscopy. Materials Chemistry and Physics, 143(3), 1215–1221.
Article
Google Scholar
Gu, G. H., & Suh, J. S. (2010). Silver nanorods used to promote SERS as a quantitative analytical tool. Journal of Raman Spectroscopy, 41, 624–627. doi:10.1002/jrs.2487.
Article
Google Scholar