BioNanoScience

, Volume 4, Issue 2, pp 136–148

Silver-Doped TiO2/Polyurethane Nanocomposites for Antibacterial Textile Coating

  • Rakesh B. Sadu
  • Daniel H. Chen
  • Ashwini S. Kucknoor
  • Zhanhu Guo
  • Andrew J. Gomes
Research Article
  • 481 Downloads

Abstract

Silver-doped titania/polyurethane (nAg-TiO2/PU) nanocomposite coatings were synthesized through a combined solution combustion and grafting from polymerization method, where nanosilver-doped titania (nAg-TiO2) was chemically attached to the skeleton of the polyurethane polymer matrix with a bifunctional monomer, 2,2-bis(hydroxymethyl) propionic acid (DMPA). The polyester fabric functionalized with nAg-TiO2/polyurethane composites using dip-coating method has shown excellent antibacterial activity against gram-negative (Escherichia coli) and gram-positive (Staphylococcus epidermidis) bacteria. The nAg-TiO2 photoreduced under methanol vapor exhibited an improved bactericidal activity because of the formation of elemental silver instead of silver oxide. XRD-EDX analysis was conducted to elucidate the percent of silver doping, the crystalline structure of titania, and the coating pattern of nAg-TiO2/PU over polyester fabric. One percent silver-doped titania was considered optimum because of its higher bactericidal activity when compared with higher-percent silver-doped titania. Effective bactericidal activity has been observed under the black light illumination, which, in conjunction with Ag-TiO2, completely inhibits any bacterial growth within 3 h of exposure. Antimicrobial effect of coating of nAg-TiO2/PU on polyester fabric was retained even after 30 traditional textile washings.

Keywords

Silver-doped TiO2 polyurethane Polyester textile coating Bactericidal effect Black light photo effect E. coli S. epidermidis 

References

  1. 1.
    Brook, L. A., Evans, P., Foster, H. A., et al. (2007). Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. Journal of Photochemistry and Photobiology A, 187(1), 53–63.CrossRefGoogle Scholar
  2. 2.
    Skorb, E. V., Antonouskaya, L. I., Belyasova, N. A., et al. (2008). Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2:In2O3 nanocomposite. Applied Catalysis B, 84, 94–99.CrossRefGoogle Scholar
  3. 3.
    Zhou, L. C., Li, Y. F., Bai, X., et al. (2009). Use of microorganisms immobilized on composite polyurethane foam to remove Cu(II) from aqueous solution. Journal of Hazardous Materials, 167, 1106–1113.CrossRefGoogle Scholar
  4. 4.
    Zhang, X., Su, H., Zhao, Y., et al. (2008). Antimicrobial activities of hydrophilic polyurethane/titanium dioxide complex film under visible light irradiation. Journal of Photochemistry and Photobiology A, 199, 123–129.CrossRefGoogle Scholar
  5. 5.
    Yagci, M. B., Bolca, S., Heuts, J. P. A., et al. (2011). Self-stratifying antimicrobial polyurethane coatings. Progress in Organic Coatings, 72(3), 305–314.CrossRefGoogle Scholar
  6. 6.
    Zhao, L., Wang, H., Huo, K., et al. (2011). Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials, 32(24), 5706–5716.CrossRefGoogle Scholar
  7. 7.
    Parkin, I. P., & Palgrave, R. G. (2005). Self-cleaning coatings. Journal of Materials Chemistry, 15, 1689–1695.CrossRefGoogle Scholar
  8. 8.
    Shang, L., Li, B. J., Zheng, Y. Y., et al. (2010). Heteronanostructure of Ag nanoparticle on titanate nanowire membrane with enhanced photocatalytic properties. Journal of Hazardous Materials, 178, 1109–1114.CrossRefGoogle Scholar
  9. 9.
    Lin, Y. C., & Lee, H. S. (2010). Effects of TiO2 coating dosage and operational parameters on a TiO2/Ag photocatalysis system for decolorizing Procion red MX-5B. Journal of Hazardous Materials, 179, 462–470.CrossRefGoogle Scholar
  10. 10.
    Tryba, B., Pixzcz, M., Morawski, A. W. (2010). Photocatalytic self-cleaning properties of Ag-doped TiO2. Open Materials Science Journal, 4, 5–8.Google Scholar
  11. 11.
    Ye, X. Y., Zhou, Y. M., Chen, J., et al. (2007). Synthesis and infrared emissivity study of collagen-g-PMMA/Ag@TiO2 composite. Materials Chemistry and Physics, 106, 447–451.CrossRefGoogle Scholar
  12. 12.
    Dastjerdi, R., Mojtahedi, M. R. M., Shoshtari, A. M., et al. (2010). Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. Journal of the Textile Institute, 101, 204–213.CrossRefGoogle Scholar
  13. 13.
    Samal, S. S., Jeyaraman, P., Vishwakarma, V. (2010). Sonochemical coating of Ag-TiO2 nanoparticles on textile fabrics for stain repellency and self-cleaning-the Indian scenario: a review. Journal of Minerals, Materials, Character, and Engineering, 9, 519–525.Google Scholar
  14. 14.
    Mills, A., & Hunte, S. L. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A, 108, 1–35.CrossRefGoogle Scholar
  15. 15.
    Burda, C., Chen, X., Narayan, R., et al. (2005). Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 105, 1025–1102.CrossRefGoogle Scholar
  16. 16.
    Yu, J. G., Su, Y. R., Cheng, B. (2007). Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Advanced Functional Materials, 17, 1984–1990.CrossRefGoogle Scholar
  17. 17.
    Mills, A., Lepre, A., Elliott, N., et al. (2003). Characterisation of the photocatalyst Pilkington Activ (TM): a reference film photocatalyst. Journal of Photochemistry and Photobiology A, 160, 213–224.CrossRefGoogle Scholar
  18. 18.
    Chin, P., & Ollis, D. F. (2007). Decolorization of organic dyes on Pilkington Activ™ photocatalytic glass. Catalysis Today, 123, 177–188.CrossRefGoogle Scholar
  19. 19.
    Morones, J., Elechiguerra, J., Camacho, A., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353.CrossRefGoogle Scholar
  20. 20.
    Nangmenyi, G., & Economy, J. (2008). Nanometallic particles for oligodynamic microbial disinfection. In N. Savage (Ed.), Nanotechnology applications for clean water (pp. 3–15). Norwich: William Andrew.Google Scholar
  21. 21.
    Cho, K. H., Park, J. E., Osaka, T., et al. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51(5), 956–960.CrossRefGoogle Scholar
  22. 22.
    Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.CrossRefGoogle Scholar
  23. 23.
    Binyu, Y., Leung, K. M., et al. (2011). Synthesis of AG-TiO2 composite nano thin film for antimicrobial application. Nanotechnology, 22(115603), 1–9.Google Scholar
  24. 24.
    Kühna, K., Chabernya, I., Massholderb, K. (2003). Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere, 53(1), 71–77.CrossRefGoogle Scholar
  25. 25.
    Fujishima, A., Hashimoto, K., Wuatanabe, T. (1999). TiO 2 photocatalysis fundamentals and applications (pp. 126–156). Tokyo: Bkc Inc.Google Scholar
  26. 26.
    Zhang, L. Z., Yu, J. C., Yip, H. Y., et al. (2003). Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir, 19, 10372–10380.CrossRefGoogle Scholar
  27. 27.
    Dong, W. J., Zhang, T. R., Epstein, J., et al. (2007). Multifunctional nanowire-bioscaffolds on titanium. Chemistry of Materials, 19, 4454–4459.CrossRefGoogle Scholar
  28. 28.
    Dong, W. J., Shi, Z., Ma, J. J., et al. (2006). One-pot redox syntheses of heteronanostructures of Ag nanoparticles on MoO3 nanofibers. Journal of Physical Chemistry B, 110, 5845–5848.CrossRefGoogle Scholar
  29. 29.
    Charpentier, P. A., Burgess, K., Wang, L., et al. (2012). Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings. Nanotechnology. doi:10.1088/0957-4484/23/42/425606.Google Scholar
  30. 30.
    Petrella, A., Tamborra, M., Curri, M. L., et al. (2005). Colloidal TiO2 nanocrystals/MEH-PPV nanocomposites: photoelectrochemical study. Journal of Physical Chemistry B, 109, 1554–1562.CrossRefGoogle Scholar
  31. 31.
    Kocher, M., Daubler, T. K., Harth, E., et al. (1998). Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide. Applied Physics Letters, 72, 650–652.CrossRefGoogle Scholar
  32. 32.
    Khaled, S., Sui, R., Charpentier, P., et al. (2007). Synthesis of TiO2-PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir, 23, 3988–3995.CrossRefGoogle Scholar
  33. 33.
    Zan, L., Tian, L. H., Liu, Z. S., Peng, Z. H. (2004). A new polystyrene-TiO2 nanocomposite film and its photocatalytic degradation. Applied Catalysis, A264, 237–242.CrossRefGoogle Scholar
  34. 34.
    Jordan, J., Jacob, K. I., Tannenbaum, R., et al. (2005). Experimental trends in polymer nanocomposites-a review. Materials Science and Engineering AA, 393, 1–11.CrossRefGoogle Scholar
  35. 35.
    Mirabedini, S. M., Sabzi, M., Zohuriaan-Mehr, J., et al. (2001). Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles. Applied Surface Science, 257(9), 4196–4203.CrossRefGoogle Scholar
  36. 36.
    Schaefer, D. W., & Justice, R. S. (2007). How nano are nanocomposites. Macromolecules, 40, 8501–8517.CrossRefGoogle Scholar
  37. 37.
    Zan, L., Tian, L., Liu, Z., Peng, Z. (2004). A new polystyrene-TiO2 nanocomposite film and its photocatalytic degradation. Applied Catalysis, A264, 237–242.CrossRefGoogle Scholar
  38. 38.
    Kim, S. H., Kwak, S. Y., Suzuki, T. (2006). Photocatalytic degradation of flexible PVC/TiO2 nanohybrid as an eco-friendly alternative to the current waste landfill and dioxin-emitting incineration of post-use. PVC Polymer, 47, 3005–3016.CrossRefGoogle Scholar
  39. 39.
    Xia, H., & Wang, Q. (2002). Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chemistry of Materials, 14, 2158–2165.CrossRefGoogle Scholar
  40. 40.
    Li, C., Han, J., Ryu, C. Y., et al. (2006). A versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles. Macromolecules, 39, 3175–3183.CrossRefGoogle Scholar
  41. 41.
    Wei, H., Ding, D., et al. (2013). Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites. Journal of Materials Chemistry A, 1, 10805–10813.CrossRefGoogle Scholar
  42. 42.
    Zhu, J., Wei, S., et al. (2011). Electromagnetic field shielding polyurethane nanocomposites reinforced with core-shell Fe-silica nanoparticles. Journal of Physical Chemistry C, 115, 15304–15310.CrossRefGoogle Scholar
  43. 43.
    Zhanhu, G., Lee, S. E., et al. (2009). Fabrication, characterization, and microwave properties of polyurethane nanocomposites reinforced with iron oxide and barium titanate nanoparticles. Acta Materialia, 57, 267–277.CrossRefGoogle Scholar
  44. 44.
    Zhanhu, G., Sung, P., Thomas Hahn, H. (2007). Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites. Journal of Applied Physics, 10, 09M511.Google Scholar
  45. 45.
    Chattopadhyay, D., Prasad, P., Sreedhar, B., Raju, K. (2005). The phase mixing of moisture cured polyurethane-urea during cure. Progress in Organic Coatings, 54, 296–304.CrossRefGoogle Scholar
  46. 46.
    Ni, H., Aaserud, D., Simonsick, W., Jr., et al. (2000). Preparation and characterization of alkoxysilane functionalized isocyanurates. Polymer, 41, 57–71.CrossRefGoogle Scholar
  47. 47.
    Hojjati, B., Sui, R. H., Charpentier, P. A. (2007). Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer, 48, 5850–5858.CrossRefGoogle Scholar
  48. 48.
    Gouveia, I. C. (2010). Nanobiotechnology: a new strategy to develop non-toxic antimicrobial textiles for healthcare applications. Journal of Biotechnology, 150, 349–349.CrossRefGoogle Scholar
  49. 49.
    Stephan Dubas, T., Kumlangdudsana, P., Potiyaraj, P. (2006). Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 289(1), 105–109.CrossRefGoogle Scholar
  50. 50.
    Reza Tehrani-Bagha, A., & Holmberg, K. (2013). Solubilization of hydrophobic dyes in surfactant solutions. Materials, 6, 580–608.CrossRefGoogle Scholar
  51. 51.
    Matthew Henry (2010) New Technology Helps Medical Textiles Fight Hospital Germs. Medical Textiles. NanoHorizons Inc. pp 34–37Google Scholar
  52. 52.
    Mucha, H., Hoter, D., Swerev, M. (2002). Antimicrobial finishes and modifications. Melli Int, 8, 148–151.Google Scholar
  53. 53.
    Zhao, C., Feng, B., Li, Y., et al. (2013). Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light. Applied Surface Science, 280, 8–14.CrossRefGoogle Scholar
  54. 54.
    Chen, X. D., Wang, Z., Liao, Z. F., et al. (2007). Roles of anatase and rutile TiO2 nanoparticles in photooxidation of polyurethane. Polymer Testing, 26, 202–208.CrossRefGoogle Scholar
  55. 55.
    Martin, R. B. (1996). Comparisons of indefinite self-association models. Chemical Reviews, 96, 3043–3064.CrossRefGoogle Scholar
  56. 56.
    Wu, D., Long, M., Zhou, J., et al. (2009). Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through facile approach. Surface and Coatings Technology, 203(24), 3728–3733.CrossRefGoogle Scholar
  57. 57.
    DeCross, A. J., Marshall, B. J., McCallum, R. W., et al. (1993). Metronidazole susceptibility testing for heliobacter pylori: comparison of disk, broth, and agar dilution methods and their clinical relevence. Journal of Clinical Microbiology, 8, 31–31.Google Scholar
  58. 58.
    Thamaphat, K., Limsuwan, P., Ngotawornchai, B. (2008). Phase characterization of TiO2 powder by XRD and TEM. Journal of Natural Science, 42, 357–361.Google Scholar
  59. 59.
    Lok, C., Ho, C., Chen, R., et al. (2007). Silver nanoparticles: partial oxidation and antibacterial activities. Journal of Biological Inorganic Chemistry, 12(4), 527–534.CrossRefGoogle Scholar
  60. 60.
    Radheshkumar, C., & Munstedt, H. (2006). Antimicrobial polymers from polypropylene/silver composites-Ag+release measured by anode stripping voltammetry. Reactive and Functional Polymers, 66, 780–788.CrossRefGoogle Scholar
  61. 61.
    Solioz, M., & Odermatt, A. (1995). Copper and silver transport by CopB-ATPase in membrane vesicles of enterococcus hirae. Journal of Biological Chemistry, 270(16), 9217–9221.Google Scholar
  62. 62.
    Kawahara, K., Tsuruda, K., Morishita, M., et al. (2000). Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dental Materials, 16, 452–455.CrossRefGoogle Scholar
  63. 63.
    Shrestha, R., & Raj Joshi, D. (2009). Oligodynamic action of silver, copper, and brass on enteric bacteria isolated from water of Kathmandu Valley. Nepal Journal of Science and Technology, 10, 189–193.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rakesh B. Sadu
    • 1
  • Daniel H. Chen
    • 1
  • Ashwini S. Kucknoor
    • 2
  • Zhanhu Guo
    • 1
    • 3
  • Andrew J. Gomes
    • 1
  1. 1.Dan F. Smith Chemical Engineering DepartmentLamar UniversityBeaumontUSA
  2. 2.Department of BiologyLamar UniversityBeaumontUSA
  3. 3.Integrated Composites Laboratory, Dan F. Smith Department of Chemical EngineeringLamar UniversityBeaumontUSA

Personalised recommendations