, Volume 4, Issue 1, pp 27–36 | Cite as

Nanostructured TiO2 Catalyzed Oxidations of Caffeine and Isocaffeine and Their Cytotoxicity and Genotoxicity Towards Ovarian Cancer Cells

  • Xiaoxi Huang
  • Anandarup Goswami
  • Xiaoxin Zou
  • Stephanie Hayes
  • Vatsal Shah
  • Tamara Minko
  • Zhimin Tao
  • Tewodros Asefa


Although caffeine is well-known as an antioxidant and a psychoactive stimulant, its antioxidative properties and biological activities under various conditions are still largely unknown. The same can be said about caffeine’s isomer, isocaffeine, whose properties have been even less investigated. Furthermore, much remains unknown about the potential biological effects and anticancer properties of the oxidative products of caffeine and isocaffeine that can be formed in solutions under different conditions. Here, the oxidations of caffeine and isocaffeine in the presence of TiO2 nanoparticles under ultraviolet (UV) irradiation are studied in different solvents [distilled water (dH2O), phosphate-buffered saline (PBS), and ethanol] using ultraviolet-visible spectroscopy, 1H NMR spectroscopy, and electrospray ionization mass spectrometry. When exposed to colloidal TiO2 nanoparticles and UV light, both caffeine and isocaffeine undergo oxidations in PBS and dH2O. Moreover, in both cases the rates of their oxidations are much higher in PBS than in dH2O. However, neither caffeine nor isocaffeine undergoes catalytic oxidations in ethanol under otherwise similar conditions. Compared with caffeine and isocaffeine, their oxidized products exhibit higher cytotoxicity and genotoxicity towards ovarian cancer cells. On the other hand, caffeine and its oxidized species show higher cyto- and geno-toxicity than isocaffeine and its oxidized products, respectively. This latter result clearly indicates that the simple structural difference by one methyl group in the xanthine backbone of these molecules causes these two molecules to exhibit distinct antioxidative properties and unique biological activities.


Titanium dioxide nanoparticles Photo-induced oxidation Caffeine Isocaffeine Cytotoxicity Genotoxicity Ovarian cancer cells 



TA gratefully acknowledges the financial assistance of the US National Science Foundation (NSF) under grant nos. NSF DMR-0968937, NSF NanoEHS-1134289, NSF-ACIF, and NSF Special Creativity grant.

Supplementary material

12668_2013_120_MOESM1_ESM.doc (1022 kb)
ESM 1 UV-vis spectra of caffeine and isocaffeine; standard calibration of caffeine and isocaffeine; 1H NMR results of caffeine, isocaffeine, and their oxidized products; ESI-MS results of caffeine, isocaffeine, and their oxidized products. (DOC 1022 kb)


  1. 1.
    Fisone, G., Borgkvist, A., Usiello, A. (2004). Caffeine as a psychomotor stimulant: Mechanism of action. Cellular and Molecular Life Sciences, 61, 857–872.CrossRefGoogle Scholar
  2. 2.
    Rousseau, E., Ladine, J., Liu, Q.-Y., Meissner, G. (1988). Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Archives of Biochemistry and Biophysics, 267, 75–86.CrossRefGoogle Scholar
  3. 3.
    Cavallaro, R. A., Filocamo, L., Galuppi, A., Galione, A., Brufani, M., Genazzani, A. A. (1999). Potentiation of cADPR-induced Ca2+-release by methylxanthine analogues. Journal of Medicinal Chemistry, 42, 2527–2534.CrossRefGoogle Scholar
  4. 4.
    Bauer, C. S., Simonis, W., Schonknecht, G. (1999). Different xanthenes cause membrane potential oscillations in a unicellular green alga pointing to a ryanodine/cADPR receptor Ca2+ channel. Plant and Cell Physiology, 40, 453–456.CrossRefGoogle Scholar
  5. 5.
    Acosta, D., & Anuforo, D. (1977). Acute mitochondrial toxicity of caffeine in cultured heart cells. Drug and Chemical Toxicology, 1, 19–24.CrossRefGoogle Scholar
  6. 6.
    Sardao, V. A., Oliveira, P. J., Moreno, A. J. (2002). Caffeine enhances the calcium-dependent cardiac mitochondrial permeability transition: relevance for caffeine toxicity. Toxicology and Applied Pharmacology, 179, 50–56.CrossRefGoogle Scholar
  7. 7.
    Jones, E., Penefsky, H. S., Souid, A.-K. (2009). Caffeine impairs HL-60 cellular respiration. Journal of Medical Sciences, 2, 61–72.CrossRefGoogle Scholar
  8. 8.
    Selby, C. P., & Sancar, A. (1990). Molecular mechanism of DNA repair inhibition by caffeine. Proceedings of the National Academy of Sciences of the United States of America, 87, 3522–3525.CrossRefGoogle Scholar
  9. 9.
    Fingert, H. J., Chang, J. D., Pardee, A. B. (1986). Cytotoxic cell cycle and chromosomal effects of methylxanthines in human tumor cells treated with alkylating agents. Cancer Research, 46, 2463–2467.Google Scholar
  10. 10.
    Shinomiya, N., Shinomiya, M., Wakiyama, H., Katsura, Y., Rokutanda, M. (1994). Enhancement of CDDP cytotoxicity by caffeine is characterized by apoptotic cell death. Experimental Cell Research, 210, 236–242.CrossRefGoogle Scholar
  11. 11.
    Shi, X., Dalal, N. S., Jain, A. C. (1991). Antioxidant behavior of caffeine: efficient scavenging of hydroxyl radicals. Food and Chemical Toxicology, 29, 1–6.CrossRefGoogle Scholar
  12. 12.
    Devasagayam, T. P., Kamat, J. P., Mohan, H., Kesavan, P. C. (1996). Caffeine as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. Biochimica et Biophysica Acta, 1282, 63–70.CrossRefGoogle Scholar
  13. 13.
    Lee, C. (2000). Antioxidant ability of caffeine and its metabolites based on the study of oxygen radical absorbing capacity and inhibition of LDL peroxidation. Clinica Chimica Acta, 295, 141–154.CrossRefGoogle Scholar
  14. 14.
    Kawasumi, M., Lemos, B., Bradner, J. E., Thibodeau, R., Kim, Y.-S., Schmidt, M., et al. (2011). Protection from UV-induced skin carcinogenesis by genetic inhibition of the ataxia telangiectasia and rad3-related (ATR) kinase. Proceedings of the National Academy of Sciences of the United States of America, 108, 13716–13721.CrossRefGoogle Scholar
  15. 15.
    Donoso, P., O’Neill, S. C., Dilly, K. W., Negretti, N., Eisner, D. A. (1994). Comparison of the effects of caffeine and other methylxanthines on [Ca2+] in rat ventricular myocytes. British Journal of Pharmacology, 111, 455–458.CrossRefGoogle Scholar
  16. 16.
    Jorge, R., & Annia, G. (1976). Is caffeine a good scavenger of oxygenated free radicals? Journal of Physical Chemistry B, 115, 4538–4546.Google Scholar
  17. 17.
    Cesaro, A., Russo, E., Crescenzi, V. (1976). Thermodynamics of caffeine aqueous solutions. Journal of Physical Chemistry, 80, 335–339.CrossRefGoogle Scholar
  18. 18.
    Dalmazio, I., Santos, L. S., Lopes, R. P., Eberlin, M. N., Augusti, R. (2005). Advanced oxidation of caffeine in water: On-line and real-time monitoring by electrospray ionization mass spectrometry. Environmental Science and Technology, 39, 5982–5988.CrossRefGoogle Scholar
  19. 19.
    Telo, J. P., & Vieira, A. J. S. C. (1997). Mechanism of free radical oxidation of caffeine in aqueous solution. Journal of the Chemical Society, Perkin Transactions, 2, 1755–1758.CrossRefGoogle Scholar
  20. 20.
    Vinchurkar, M. S., Rao, B. S., Mohan, H., Mittal, J. P., Schmidt, K. H., Jonah, C. D. (1997). Absorption spectra of isomeric OH adducts of 1 3 7-trimethylxanthine. Journal of Physical Chemistry A, 101, 2953–2959.CrossRefGoogle Scholar
  21. 21.
    Dayan, N., Shah, V., Minko, T. (2011). Preliminary evaluation of the genotoxic potential of a hydrophilic polymer with three preservation systems. International Journal of Cosmetic Science, 33, 497–502.CrossRefGoogle Scholar
  22. 22.
    Shah, V., Taratula, O., Garbuzenko, O. B., Patil, M. L., Savla, R., Zhang, M., et al. (2012). Genotoxicity of different nanocarriers: Possible modifications for the delivery of nucleic acids. Current Drug Discovery Technologies, 10, 8–15.Google Scholar
  23. 23.
    Reeves, P., Ohlhausen, R., Sloan, D., Pamplin, K., Scoggins, T., Clark, C., et al. (1992). Photocatalytic destruction of organic dyes in aqueous TiO2 suspensions using concentrated simulated and natural solar energy. Solar Energy, 48, 413–420.CrossRefGoogle Scholar
  24. 24.
    Zou, X., Tao, Z., Asefa, T. (2013). Semiconductor and plasmonic photocatalysis for selective organic transformations. Current Organic Chemistry, 17, 1274–1287.CrossRefGoogle Scholar
  25. 25.
    Hakki, A., Dillert, R., Bahnemann, D. W. (2013). Arenesulfonic acid-functionalized mesoporous silica decorated with titania: a heterogeneous catalyst for the one-pot photocatalytic synthesis of quinolines from nitroaromatic compounds and alcohols. ACS Catalysis, 3, 565–572.CrossRefGoogle Scholar
  26. 26.
    Du, J., Lai, X., Yang, N., Zhai, J., Kisailus, D., Su, F., et al. (2001). Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer reduced charge recombination and their enhanced photocatalytic activities. ACS Nano, 5, 590–596.CrossRefGoogle Scholar
  27. 27.
    Guttman, D., & Higuchi, T. (1957). Reversible association of caffeine and of some caffeine homologs in aqueous solution. Journal of the American Pharmaceutical Association, 46, 4–10.CrossRefGoogle Scholar
  28. 28.
    Gill, S. J., Downing, M., Sheats, G. F. (1967). The enthalpy of self-association of purine derivatives in water. Biochemistry, 6, 272–276.CrossRefGoogle Scholar
  29. 29.
    Yanuka, Y., & Bergmann, F. (1986). Spectroscopic studies on caffeine and isocaffeine. Tetrahedron, 42, 5991–6002.CrossRefGoogle Scholar
  30. 30.
    Tao, Z., Wang, G., Goodisman, J., Asefa, T. (2009). Accelerated oxidation of epinephrine by silica nanoparticles. Langmuir, 25, 10183–10188.CrossRefGoogle Scholar
  31. 31.
    Chen, H., Nanayakkara, C. E., Grassian, V. H. (2012). Titanium dioxide photocatalysis in atmospheric chemistry. Chemical Reviews, 112, 5919–5948.CrossRefGoogle Scholar
  32. 32.
    Tworoger, S. S., Gertig, D. M., Gates, M. A., Hecht, J. L., Hankinson, S. E. (2008). Caffeine alcohol smoking and the risk of incident epithelial ovarian cancer. Cancer, 112, 1169–1177.CrossRefGoogle Scholar
  33. 33.
    He, Z., Ma, W. Y., Hashimoto, T., Bode, A. M., Yang, C. S., Dong, Z. (2003). Induction of apoptosis by caffeine is mediated by the p53 Bax and caspase 3 pathways. Cancer Research, 63, 4396–4401.Google Scholar
  34. 34.
    Moufarij, M. A., Phillips, D. R., Cullinane, C. (2003). Gemcitabine potentiates cisplatin cytotoxicity and inhibits repair of cisplatin-DNA damage in ovarian cancer cell lines. Molecular Pharmacology, 63, 862–869.CrossRefGoogle Scholar
  35. 35.
    Wang, Q. E., Milum, K., Han, C., Huang, Y. W., Wani, G., Thomale, J., et al. (2011). Differential contributory roles of nucleotide excision and homologous recombination repair for enhancing cisplatin sensitivity in human ovarian cancer cells. Molecular Cancer, 10, 24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xiaoxi Huang
    • 1
  • Anandarup Goswami
    • 1
    • 2
  • Xiaoxin Zou
    • 1
    • 2
  • Stephanie Hayes
    • 1
  • Vatsal Shah
    • 3
  • Tamara Minko
    • 3
  • Zhimin Tao
    • 1
    • 2
  • Tewodros Asefa
    • 1
    • 2
    • 4
  1. 1.Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayUSA
  2. 2.Department of Chemical and Biochemical EngineeringRutgers, The State University of New JerseyPiscatawayUSA
  3. 3.Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New JerseyPiscatawayUSA
  4. 4.The Institute for Advanced Materials, Devices and Nanotechnology (IAMDN)Rutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations