, Volume 3, Issue 3, pp 254–269 | Cite as

Survey of Sensor-Based Personal Wellness Management Systems

  • Zerrin Yumak
  • Pearl Pu


The cost of healthcare is expected to grow enormously in the coming years. To keep these costs limited, we need better technological tools for self-monitoring and independent aging and to put a stronger emphasis on wellness, defined as a balanced and healthy lifestyle that avoids diseases at every stage of life. In contrast to traditional medical science that examines patients in laboratories, wellness has so far been difficult to measure objectively. This situation is changing due to the availability of wearable and pervasive sensors, smartphones, and other body-worn devices that can track and infer users’ activities. Technological advances in this area are rapidly pushing forward. The range of methods as well as the health domains where sensors have been used for monitoring is proliferating. This has created a unique opportunity to understand wellness in an integrative and balanced framework. The goal of this survey is to summarize the latest innovations in sensor technology and present the state-of-the-art of personal wellness management systems with the purpose of shedding light on where this field is developing and where the future research opportunities lie.


Off-the-shelf sensors Personal wellness management systems User-centric evaluation 


  1. 1.
    Dishman, E. (2004). Inventing wellness systems for aging in place. Computer, 37(5), 34–41.CrossRefGoogle Scholar
  2. 2.
    Pantelopoulos, A., & Bourbakis, N. (2010). A survey on wearable sensor-based systems for health monitoring and prognosis. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40(1), 1–12.CrossRefGoogle Scholar
  3. 3.
    Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A. T. (2010). A survey of mobile phone sensing. IEEE Communications Magazine, 48(9), 140–150.CrossRefGoogle Scholar
  4. 4.
    Lara, O. D., & Labrador, M. A. (2012). A survey on human activity recognition using wearable sensors. Tech. rep. Accessed March 2013.
  5. 5.
    Adidas MiCoach. Accessed March 2013.
  6. 6.
    Nike+iPod. Accessed March 2013.
  7. 7.
    BodyMedia SenseWear. Accessed March 2013.
  8. 8.
    Omron Pedometer. Accessed March 2013.
  9. 9.
    MyBasis. Accessed March 2013.
  10. 10.
    BodyBugg. Accessed March 2013.
  11. 11.
    FitBit. Accessed March 2013.
  12. 12.
    Affectiva Q. Accessed March 2013.
  13. 13.
    Philips Direct Life. Accessed March 2013.
  14. 14.
    JawBone UP. Accessed March 2013.
  15. 15.
    WakeMate. Accessed March 2013.
  16. 16.
    Metria. Accessed March 2013.
  17. 17.
    Zeo SleepManager. Accessed March 2013.
  18. 18.
    Valencell. Accessed March 2013.
  19. 19.
    Zephyr. Accessed March 2013.
  20. 20.
    Polar. Accessed March 2013.
  21. 21.
    Nexus Respiration Sensor. Accessed March 2013.
  22. 22.
    Quantified-Self. Accessed March 2013.
  23. 23.
    Personal Informatics. Accessed March 2013.
  24. 24.
    Amft, O., & Troster, G. (2008). Recognition of dietary activity events using on-body sensors. Artificial Intelligence in Medicine, 42(2), 121–136.CrossRefGoogle Scholar
  25. 25.
    Amft, O., Bannach, D., Pirkl, G., Kreil, M., Lukowicz, P. (2010). Towards wearable sensing-based assessment of fluid intake. In Pervasive Computing and Communications Workshop on, (pp. 298–303).Google Scholar
  26. 26.
    MyFoodPhone. Accessed March 2012.
  27. 27.
    Noronha, J., Hysen, E., Zhang, H., Gajos, K. Z. (2011). Platemate: crowdsourcing nutritional analysis from food photographs. In Proceedings of the 24th annual ACM symposium on User Interface Software and Technology, UIST '11, (pp. 1–12). Santa Barbara, California, USA.Google Scholar
  28. 28.
    Chae, J., Woo, I., Kim, S., Maciejewski, R., Zhu, F., Delp E.J., et al. (2011). Volume estimation using food specific shape templates in mobile image-based dietary assessment. Proceedings of SPIE, International society for optics and photonics, 7873.Google Scholar
  29. 29.
    Arab, L., Estrin, D., Kim, D. H., Burke, J., Goldman, J. (2011). Feasibility testing of an automated image-capture method to aid dietary recall. European Journal of Clinical Nutrition, 65, 1156–1162.CrossRefGoogle Scholar
  30. 30.
    Reddy, S., Parker, A., Hyman, J., Burke, J., Estrin, D., Hansen, M. (2007). Image browsing, processing, and clustering for participatory sensing: lessons from a DietSense prototype. In Proceedings of the 4th workshop on Embedded networked sensors (pp. 13–17).Google Scholar
  31. 31.
    Siek, K. A., Connelly, K. H., Rogers, Y., Rohwer, P., Lambert, D., Welch, J. L. (2006). When do we eat? An evaluation of food items input into an electronic food monitoring application. In Pervasive Health Conference and Workshops. (pp. 1–10).Google Scholar
  32. 32.
    Kallehave, O., Skov, M. B., Tiainen, N. (2011). Persuasion in-situ: shopping for healthy food in supermarkets. In The 2nd International Workshop on Persuasion, Influence, Nudge and Coercion through mobile devices, CHI '11.Google Scholar
  33. 33.
    Mankoff, J., Hsieh, G., Hung, H. C., Lee S., Nitao, E. (2002). Using low-cost sensing to support nutritional awareness. In Proceedings of the 4th international conference on Ubiquitous Computing, UbiComp '02. (pp. 371–376). London, UK.Google Scholar
  34. 34.
    Vyas, N., Farringdon, J., Andre, D., Stivoric, J. (2011). Machine learning and sensor fusion for estimating continuous energy expenditure. In D.G. Shapiro, & M.P.J. Fromherz (Eds.), 23rd IAAI Innovative Applications of Artificial Intelligence Conference.Google Scholar
  35. 35.
    Ainsworth, B. E., Haskell, W. L., Whitt, M. C., Irwin, M. L., Swartz, A. M., Strath, S. J., O’Brien, W. L., Bassett, D. R., Jr., Schmitz, K. H., Emplaincourt, P. O., Jacobs, D. R., Jr., Leon, A. S. (2000). Compendium of S codes and MET intensities. Medicine and Science in Sports and Exercise, 32(Suppl), S498–S516.CrossRefGoogle Scholar
  36. 36.
    Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Jr., Bassett, D. R., Tudor-Locke, C., Greer, J. L., Vezina, J., Whitt-Glover, M. C., Leon, A. S. (2011). 2011 compendium of physical activities: a second update of codes and MET values. Medicine and Science in Sports and Exercise, 43(8), 1575–1581.CrossRefGoogle Scholar
  37. 37.
    Byrne, N. M., Hills, A. P., Hunter, G. R., Weinsier, R. L., Schutz, Y. (2010). Metabolic equivalent: one size does not fit all. Journal of Applied Physiology, 99(3), 1112–1119.CrossRefGoogle Scholar
  38. 38.
    Bao, L., & Intille, S. S. (2004). Activity recognition from user-annotated acceleration data. In Pervasive Computing, Second International Conference, PERVASIVE 2004, Vienna, Austria, volume 3001, (pp. 1–17). Springer.Google Scholar
  39. 39.
    Ravi, N., Dandekar, N., Mysore, P., Littman, M. L. (2005). Activity recognition from accelerometer data. In Proceedings of the 17th Conference on Innovative Applications of Artificial Intelligence IAAI. (pp. 1541–1546).Google Scholar
  40. 40.
    Tapia, E. M., Intille, S. S., Haskell, W., Larson, K., Wright, J., King, A., et al. (2007). Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. In Proceedings of the 2007 11th IEEE International Symposium on Wearable Computers, ISWC '07. (pp. 1–4). Washington, DC, USA. IEEE Computer Society.Google Scholar
  41. 41.
    Kwapisz, J. R., Weiss, G. M., Moore, S. A. (2011). Activity recognition using cell phone accelerometers. SIGKDD Exploration Newsletter, 12(2), 74–82.CrossRefGoogle Scholar
  42. 42.
    Sazonov, E. S., Fulk, G., Hill, J., Schutz, Y., Browning, R. (2011). Monitoring of posture allocations and activities by a shoe-based wearable sensor. IEEE Transactions on Biomedical Engineering, 58, 983–990.CrossRefGoogle Scholar
  43. 43.
    Lin, J. J., Mamykina, L., Lindtner, S., Delajoux, G., Strub, H. B. (2006). Fish’n’Steps: encouraging physical activity with an interactive computer game. In P. Dourish & A. Friday (Eds.), Ubicomp, volume 4206 of Lecture Notes in Computer Science. (pp. 261–278). Springer.Google Scholar
  44. 44.
    Barkhuus, L., Maitl, J., Anderson, I., Sherwood, S., Hall, M., Chalmers M. (2006). Shakra: sharing and motivating awareness of everyday activity. In Ubicomp 2006. ACM Press.Google Scholar
  45. 45.
    Consolvo, S., McDonald, D. W., Toscos, T., Chen, M. Y., Froehlich, J., Harrison, B., et al. (2008). Activity sensing in the wild: a field trial of Ubifit garden. In Proceedings of the 26th annual SIGCHI conference on Human factors in computing systems, CHI '08. (pp. 1797–1806), New York, NY, USA.Google Scholar
  46. 46.
    Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D., Harrison, B., Hemingway, B., Hightower, J., Klasnja, P. P., Koscher, K., LaMarca, A., Landay, J. A., LeGrand, L., Lester, J., Rahimi, A., Rea, A., Wyatt, D. (2008). The mobile sensing platform: an embedded activity recognition system. IEEE Pervasive Computing, 7(2), 32–41.CrossRefGoogle Scholar
  47. 47.
    Froehlich, J., Chen, M. Y., Consolvo, S., Harrison, B., Landay J. A. (2007). MyExperience: a system for in-situ tracing and capturing of user feedback on mobile phones. In Proceedings of the 5th international conference on Mobile systems, applications and services, MobiSys '07. (pp. 57–70), New York, NY, USA.Google Scholar
  48. 48.
    Rabbi, M., Ali, S., Choudhury, T., Berke, E. (2011). Passive and in-situ assessment of mental and physical well-being using mobile sensors. In Proceedings of the 13th international conference on Ubiquitous computing, UbiComp '11. (pp. 385–394).Google Scholar
  49. 49.
    Lane, N. D., Mohammod, M., Lin, M., Yang, X., Lu, H., Ali, S., et al. (2011). BeWell: a smartphone application to monitor, model and promote wellbeing. In 5th International ICST Conference on Pervasive Computing Technologies for Healthcare. (pp. 23–26).Google Scholar
  50. 50.
    Yang, J., Liu, Z., Lu, H., Lane, N. D., Tanzeem, C., Andrew, C. T. (2010). The Jigsaw continuous sensing engine for mobile phone applications. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems.Google Scholar
  51. 51.
    Li, I., Dey, A. K., Forlizzi, J. (2012). Using context to reveal factors that affect physical activity. ACM Transactions on Computer-Human Interaction, 19(1).Google Scholar
  52. 52.
    Bielik, P., Tomlein, M., Krátky, P., Mitrík, S., Barla, M., Bieliková, M. (2012). Move2Play: an innovative approach to encouraging people to be more physically active. In Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium (IHI '12).Google Scholar
  53. 53.
    Buttussi, F., & Chittaro, L. (2008). MOPET: a context-aware and user-adaptive wearable system for fitness training. Artificial Intelligence in Medicine, 42(2), 153–163.CrossRefGoogle Scholar
  54. 54.
    Bickmore, T., Mauer, D., Brown, T. (2009). Context awareness in a handheld exercise agent. Pervasive and Mobile Computing Special Issue on Pervasive Health and Wellness, 5, 226–235.CrossRefGoogle Scholar
  55. 55.
    Bauer, J., Consolvo, S., Greenstein, B., Schooler, J., Wu, E., Watson, N. F., Kientz, J. (2012). Shuteye: Encouraging awareness of healthy sleep recommendations with a mobile, peripheral display. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, CHI '12. (pp. 1401–1410).Google Scholar
  56. 56.
    Choe, E. K., Consolvo, S., Watson, N. F., Kientz, J. A. (2011). Opportunities for computing technologies to support healthy sleep behaviors. In Proceedings of the 2011 annual conference on Human factors in computing systems, CHI '11. (pp. 3053–3062).Google Scholar
  57. 57.
    Borazio, M., & Van Laerhoven, K. (2012). Combining wearable and environmental sensing into an unobtrusive tool for long-term sleep studies. In Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, IHI '12. (pp. 71–80).Google Scholar
  58. 58.
    Sano, A., & Picard, R. (2011). Toward a taxonomy of autonomic sleep patterns with electrodermal activity. In Proceedings of IEEE Engineering in Medicine and Biology Society.Google Scholar
  59. 59.
    Sunseri, M., Liden, C., Farringdon, J., Pelletier, R., Safier, S., Stivoric, J., et al. (2012). The sensewear armband as a sleep detection device. BodyMedia SenseWear Whitepapers. Accessed June 2012.Google Scholar
  60. 60.
    Karlen, W., Mattiussi, C., Floreano, D. (2009). Sleep and wake classification with ECG and respiratory effort signals. Biomedical Circuits and Systems, IEEE Transactions on, 3(2), 71–78.CrossRefGoogle Scholar
  61. 61.
    Setz, C., Arnrich, B., Schumm, J., La Marca, R., Troster, G., Ehlert, U. (2010). Discriminating stress from cognitive load using a wearable EDA device. IEEE Transactions on Information Technology in Biomedicine, 14(2), 410–417.CrossRefGoogle Scholar
  62. 62.
    Healey, J. A., & Picard, R. W. (2005). Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems, 6, 156–166.CrossRefGoogle Scholar
  63. 63.
    Hernandez, J., Morris, R. R., Picard, R. W. (2011). Call center stress recognition with person-specific models. In Proceedings of the 4th international conference on Affective computing and intelligent interactionvolume Part I, ACII'11. (pp. 125–134), Berlin: Springer-Verlag.Google Scholar
  64. 64.
    Poh, M. Z., Kim, K., Goessling, A. D., Swenson, N. C., Picard, R. W. (2009). Heartphones: sensor earphones and mobile application for non-obtrusive health monitoring. Proceedings of the 13th IEEE International Symposium on Wearable Computers. (pp. 153–154). Linz, Austria.Google Scholar
  65. 65.
    Morris, M., & Guilak, F. (2009). Mobile heart health: project highlight. IEEE Pervasive Computing, 8, 57–61.CrossRefGoogle Scholar
  66. 66.
    Healey, L., Nachman, S., Subramanian, J. S., Morris, M. (2010). Out of the lab and into the fray: towards modeling emotion in everyday life. In P. Floreen, A. Kruger, & M. Spasojevic (Eds.), Pervasive computing, volume 6030 of Lecture Notes in Computer Science (pp. 156–173). Berlin: Springer.Google Scholar
  67. 67.
    Baker, J., Pechenizkiy, M., Sidorova, N. (2011). What’s your current stress level? Detection of stress patterns from GSR sensor data. In Proc. of ICDM 2011 Workshops. IEEE Press.Google Scholar
  68. 68.
    Sun, F. T., Kuo, C., Cheng, H.-T., Buthpitiya, S., Collins, P., Griss, M. (2012). Activity-aware mental stress detection using physiological sensors. In: M. Gris, Yang, G. (Eds.), Mobile Computing, Applications, and Services, volume 76 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. (pp. 211–230).Google Scholar
  69. 69.
    Stahl, A., Höök, K., Svensson, M., Taylor, A. S., Combetto, M. (2009). Experiencing the affective diary. Personal and Ubiquitous Computing, 13(5), 365–378.CrossRefGoogle Scholar
  70. 70.
    McDuff, D., Karlson, A., Kapoor, A., Roseway, A., Czerwinski, M. (2012). AffectAura: an intelligent system for emotional memory. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, CHI '12. (pp. 849–858). New York, NY, USA.Google Scholar
  71. 71.
    Rachuri, K. K., Musolesi, M., Mascolo, C., Rentfrow, P. J., Longworth, C., Aucinas, A. (2010). EmotionSense: a mobile phones based adaptive platform for experimental social psychology research. In Proceedings of the 12th ACM international conference on Ubiquitous computing, Ubicomp '10. (pp. 281–290).Google Scholar
  72. 72.
    Matic, A., Osmani, V., Popleteev, A., Mayora-Ibarra, O. (2011). Smart phone sensing to examine effects of social interactions and non-sedentary work time on mood changes. In Proceedings of the 7th international and interdisciplinary conference on modeling and using context, CONTEXT'11, (pp. 200–213).Google Scholar
  73. 73.
    Eagle, N., & Pentland, A. (2006). Reality mining: sensing complex social systems. Personal and Ubiquitous Computing, 10(4), 255–268.CrossRefGoogle Scholar
  74. 74.
    Do, T., Gatica-Perez, D. (2011). Human interaction discovery in smartphone proximity networks. Personal and Ubiquitous Computing, 1–19.Google Scholar
  75. 75.
    Prochaska, J. O., & Velicer, W. F. (1997). The transtheoretical model of health behavior change. American Journal of Health Promotion, 12(1), 38–48. Accessed 2009 Mar 18.CrossRefGoogle Scholar
  76. 76.
    Locke, E. A., & Latham, G. P. (2002). Building a practically useful theory of goal setting and task motivation: a 35-year odyssey. American Psychologist, 57(9), 705–717.CrossRefGoogle Scholar
  77. 77.
    Festinger, L. A. (1957). Theory of cognitive dissonance. Stanford: Stanford University Press.Google Scholar
  78. 78.
    Consolvo, S., McDonald, D. W., Landay, J. A. (2009). Theory-driven design strategies for technologies that support behavior change in everyday life. In Proceedings of the 27th international conference on Human factors in computing systems (CHI '09). New York: ACM.Google Scholar
  79. 79.
    Li, I., Dey, A., Forlizzi, J. (2010). A stage-based model of personal informatics systems. In Proceedings of the 28th international conference on Human factors in computing systems (CHI '10). (pp. 557–566) New York: ACM.Google Scholar
  80. 80.
    Cialdini, R. B. (2001). The science of persuasion, Scientific American-American Edition, vol 284, part 2, pp. 62–67.Google Scholar
  81. 81.
    Fogg, B. J. (2003). Persuasive technology: using computers to change what we think and do. Burlington: Morgan Kaufmann.Google Scholar
  82. 82.
    Pavel, D., Callaghan, V., Dey, A. K. (2011) From self-monitoring to self-understanding: going beyond physiological sensing for supporting wellbeing. International Workshop on Pervasive Computing Paradigms for Mental Health (MindCare 2011), Pervasive Health 2011 conference, Dublin, May 2011.Google Scholar
  83. 83.
    Scholtz, J., & Consolvo, S. (2004) Towards a discipline for evaluating ubiquitous computing applications. National Institute of Standards and Technology.Google Scholar
  84. 84.
    Fensli, R., Pedersen, P. E., Gundersen, T., Hejlesen, O. K. (2008). Sensor acceptance model: measuring patient acceptance of wearable sensors. Methods of Information in Medicine, 47(1), 89–95.Google Scholar
  85. 85.
    Workshop on Evaluating Off-the-Shelf Technologies for Personal Health Monitoring. In UbiComp 2012. Accessed March 2013.
  86. 86.
    Kientz, J. A., Choe, E. K., Birch, B., Maharaj, R., Fonville, A., Glasson, C., Mundt, J. (2010). Heuristic evaluation of persuasive health technologies. In Proceedings of the 1st ACM International Health Informatics Symposium (IHI '10), T. Veinot (Ed.). ACM, New York, NY, USA, 555–564.Google Scholar
  87. 87.
    Cooper, A. (2007). About face 3: the essentials of interaction design. New York: Wiley (with Robert Reimann and David Cronin). ISBN 0-4700-8411-1.Google Scholar
  88. 88.
    Raij, A., Ghosh, A., Kumar, S., Srivastava, M. (2011). Privacy risks emerging from the adoption of innocuous wearable sensors in the mobile environment. In Proceedings of the 2011 annual conference on Human factors in computing systems (CHI '11). New York: ACM.Google Scholar
  89. 89.
    Lane, N. D., Xu, Y., Lu, H., Hu, S., Choudhury, T., Campbell, A., et al. (2011). Enabling large-scale human activity inference on smartphones using community similarity networks. Proceedings of Ubicomp. Beijing, China.Google Scholar
  90. 90.
    Kapadia, A., Kotz, D., Triandopoulos, N. (2009). Opportunistic sensing: security challenges for the new paradigm. In Proceedings of the First international conference on COMmunication Systems And NETworks (COMSNETS'09). (pp. 127–136). Piscataway: IEEE Press.Google Scholar
  91. 91.
    Roggen, D., Förster, K., Calatroni, A., Holleczek, T., Fang, Y., Tröster, G., et al. (2009). Opportunity: towards opportunistic activity and context recognition systems. Third IEEE WoWMoM Workshop on Autonomic and Opportunistic Communications Google Scholar
  92. 92.
    Tollmar, K., Bentley, F., Viedma, C. (2012). Mobile health mashups: making sense of multiple streams of wellbeing and contextual data for presentation on a mobile device. Pervasive Health.Google Scholar
  93. 93.
    Farrell, R., Danis, C., Ramakrishnan, S., Kellogg, W. (2012). Intrapersonal retrospective recommendation: lifestyle change recommendations using stable patterns of personal behavior. Lifestyle Workshop in RecSys.Google Scholar
  94. 94.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Swiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations