Skip to main content
Log in

Gold and Silver Nanoparticles for Electrochemical Detection of Cardiac Troponin I Based on Stripping Voltammetry

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

A novel electrochemical method for the detection of cardiac troponin I (cTnI) based on stripping voltammetry of gold or silver nanoparticles was developed. The analytical response was a gold oxides reduction peak current after 30 s oxidation E = +1.2 V or peak current after the oxidation of silver upon polarization. Cathodic peak height of Au and anodic peak height of Ag were found to be proportional to the quantity of cTnI specifically adsorbed onto the electrode surface modified with anti-cTnI. The monitoring of cTnI was performed using plasma samples of healthy donors and patients with acute myocardial infarction. The limit of detection of screen-printed electrode/AuNPel/didodecyldimethylammonium bromide/anti-cTnI was equal to 0.1 ng/ml (4.25 pM). Linear range of cTnI response corresponded to the 0.1–32 ng/ml (4.25 рМ–1.34 nM) concentration range with a correlation coefficient of 0.97.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McDonnell, B., Hearty, S., Leonard, P., O'Kennedy, R. (2009). Cardiac biomarkers and the case for point-of-care testing. Clinical Biochemistry, 42, 549–561.

    Article  Google Scholar 

  2. Anderson, L. (2005). Candidate-based proteomics in the search for biomarkers of cardiovascular disease. The Journal of Physiology, 563, 23–60.

    Article  Google Scholar 

  3. Antman, E., Bassand, J.-P., Klein, W., Ohman, M., Lopez Sendon, J. L., Rydén, L., Simoons, M., Tendera, M. (2000). Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction: The Joint European Society of Cardiology/American College of Cardiology Committee. Journal of the American College of Cardiology, 36, 959–969.

    Article  Google Scholar 

  4. Melki, D., Lind, S., Agewall, S., Jernberg, T. (2012). Prognostic value of combining high sensitive troponin T and N-terminal pro B-type natriuretic peptide in chest pain patients with no persistent ST-elevation. Clinica Chimica Acta, 413, 933–937.

    Article  Google Scholar 

  5. Amodio, G., Antonelli, G., Varraso, L., Ruggieri, V., Di Serio, F. (2007). Clinical impact of the troponin 99th percentile cut-off and clinical utility of myoglobin measurement in the early management of chest pain patients admitted to the Emergency Cardiology Department. Coronary Artery Disease, 18, 181–186.

    Article  Google Scholar 

  6. Mahmarian, J. J. (2007). The troponin conundrum: clarification through stress myocardial perfusion SPECT. Journal of Nuclear Cardiology, 14, 6–8.

    Article  Google Scholar 

  7. Xu, Q., Xu, H., Gu, H., Li, J., Wang, Y., Wei, M. (2009). Development of lateral flow immunoassay system based on superparamagnetic nanobeads as labels for rapid quantitative detection of cardiac troponin I. Materials Science and Engineering: C, 29, 702–707.

    Article  Google Scholar 

  8. Bhalla, V., Carrara, S., Sharma, P., Nangia, Y., Raman Suri, C. (2012). Gold nanoparticles mediated label-free capacitance detection of cardiac troponin I. Sensors and Actuators B: Chemical, 161, 761–768.

    Article  Google Scholar 

  9. Apple, F. S., Ler, R., Chung, A. Y., Berger, M. J., Murakami, M. M. (2006). Point-of-care i-STAT cardiac troponin I for assessment of patients with symptoms suggestive of acute coronary syndrome. Clinical Chemistry, 52, 322–325.

    Article  Google Scholar 

  10. Apple, F. S., Jesse, R. L., Newby, L. K., Wu, A. H., Christenson, R. H., Cannon, C. P., Francis, G., Morrow, D. A., Ravkilde, J., Storrow, A. B., Tang, W., Jaffe, A. S., Mair, J., Ordonez-Llanos, J., Pagani, F., Panteghini, M., Tate, J. (2007). National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine Practice Guidelines: analytical issues for biochemical markers of acute coronary syndromes. Clinical Chemestry, 53, 547–551.

    Article  Google Scholar 

  11. Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., White, H. D. (2012). Third universal definition of myocardial infarction. Global Heart, 7, 275–295.

    Article  Google Scholar 

  12. Suprun, E. V., Saveliev, A. A., Evtugyn, G. A., Lisitsa, A. V., Bulko, T. V., Shumyantseva, V. V., Archakov, A. I. (2012). Electrochemical approach for acute myocardial infarction diagnosis based on direct antibodies-free analysis of human blood plasma. Biosensors and Bioelectronics, 33, 158–164.

    Article  Google Scholar 

  13. Qureshi, A., Gurbuz, Y., Niazi, J. H. (2012). Biosensors for cardiac biomarkers detection: a review. Sensors and Actuators B: Chemical, 171–172, 62–76.

    Article  Google Scholar 

  14. Monosık, R., Stredansky, M., Sturdık, E. (2012). Application of electrochemical biosensors in clinical diagnosis. Journal of Clinical Laboratory Analysis, 26, 22–34.

    Google Scholar 

  15. Tansil, N. C., & Gao, Z. (2006). Nanoparticles in biomolecular detection. Nano Today, 1, 28–37.

    Article  Google Scholar 

  16. Suprun, E., Shumyantseva, V., Bulko, T., Rachmetova, S., Rad’ko, S., Bodoev, N., Archakov, A. (2008). Au-nanoparticles as an electrochemical sensing platform for aptamer–thrombin interaction. Biosensors and Bioelectronics, 24, 825–830.

    Article  Google Scholar 

  17. Shumyantseva, V. V., Bulko, T. V., Suprun, E. V., Archakov, A. I. (2009). Electrochemical methods for the investigation of bioaffinity interactions based on gold nanoparticles modified sensors. Electroanalysis, 21, 530–535.

    Article  Google Scholar 

  18. Suprun, E. V., Shumyantseva, V. V., Rakhmetova, S., Voronina, S., Rad'ko, S., Bodoev, N., Archakov, A. I. (2010). Label-free electrochemical thrombin aptasensor based on Ag nanoparticles modified electrode. Electroanalysis, 22, 1386–1392.

    Article  Google Scholar 

  19. Wang, J., Xu, D., Kawde, A. N., Polsky, R. (2001). Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Analitical Chemistry, 73, 5576–5581.

    Article  Google Scholar 

  20. Liu, G., & Lin, Y. (2007). Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta, 74, 308–317.

    Article  Google Scholar 

  21. Tang, D., Yuan, R., Chai, Y. (2006). Electrochemical immuno-bioanalysis for carcinoma antigen 125 based on thionine and gold nanoparticles-modified carbon paste interface. Analytica Chimica Acta, 564, 158–165.

    Article  Google Scholar 

  22. Shumyantseva, V. V., Carrara, S., Bavastrello, V., Jason Riley, D., Bulko, T. V., Skryabin, K. G., Archakov, A. I., Nicolini, C. (2005). Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium-graphite electrodes. Biosens and Bioelectronics, 21, 217–222.

    Article  Google Scholar 

  23. Shumyantseva, V. V., Bulko, T. V., Rudakov, Y. O., Kuznetsova, G. P., Samenkova, N. F., Lisitsa, A. V., Karuzina, I. I., Archakov, A. I. (2007). Electrochemical properties of cytochroms P450 using nanostructured electrodes: direct electron transfer and electro catalysis. Journal of Inorganic Biochemistry, 101, 859–865.

    Article  Google Scholar 

  24. Shumyantseva, V. V., Bulko, T. V., Kuznetsova, G. P., Lisitsa, A. V., Ponomarenko, E. A., Karuzina, I. I., Archakov, A. I. (2007). Electrochemical reduction of sterol-14alpha-demethylase from Mycobacterium tuberculosis (CYP51b1). Biochemistry (Mosc), 72, 658–663.

    Article  Google Scholar 

  25. Ivanov, Y. D., Govorun, V. M., Bykov, V. A., Archakov, A. I. (2006). Nanotechnologies in proteomics. Proteomics, 6, 1399–1414.

    Article  Google Scholar 

  26. Zelada-Guillen, G. A., Tweed-Kent, A., Niemann, M., Niemann, H. U., Riu, J., Rius, F. X. (2013). Ultrasensitive and real-time detection of proteins in blood using a potentiometric carbon-nanotube aptasensor. Biosensors and Bioelectronics, 41, 366–371.

    Article  Google Scholar 

  27. Ozsoz, M., Erdem, A., Kerman, K., Ozkan, D., Tugrul, B., Topcuoglu, N., Ekren, H., Taylan, M. (2003). Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Analytical Chemistry, 75, 2181–2187.

    Article  Google Scholar 

  28. Mattos, A. B., Freitas, T. A., Silva, V. L., Dutra, R. F. (2012). A dual quartz crystal microbalance for human cardiac troponin T in real time detection. Sensors and Actuators B: Chemical, 161, 439–446.

    Article  Google Scholar 

  29. Karadeniz, H., Erdem, A., Caliskan, A., Pereira, C. M., Pereira, E. M., Ribeiro, J. A. (2007). Electrochemical sensing of silver tags labelled DNA immobilized onto disposable graphite electrodes. Electrochemistry Communications, 9, 2167–2173.

    Article  Google Scholar 

  30. Freeman, R. G., Grabar, K. C., Allison, K. J., Bright, R. M., Davis, J. A., Guthrie, A. P., Hommer, M. B., Jackson, M. A., Smith, P. C., Walter, D. G., Natan, M. J. (1995). Self-assembled metal colloid monolayers: an approach to SERS substrates. Science, 267, 1629–1632.

    Article  Google Scholar 

  31. Chou, K.-S., & Ren, C.-Y. (2000). Synthesis of nanosized silver particles by chemical reduction method. Materials Chemistry and Physics, 64, 241–246.

    Article  Google Scholar 

  32. Burgoa Calvo, M. E., Domínguez Renedo, O., Arcos Martínez, M. J. (2007). Determination of lamotrigine by adsorptive stripping voltammetry using silver nanoparticle-modified carbon screen-printed electrodes. Talanta, 74, 59–64.

    Article  Google Scholar 

  33. Chikae, M., Idegami, K., Kerman, K., Nagatani, N., Ishikawa, M., Takamura, Y., Tamiya, E. (2006). Direct fabrication of catalytic metal nanoparticles onto the surface of a screen-printed carbon electrode. Electrochemistry Communications, 8, 1375–1380.

    Article  Google Scholar 

  34. Li, Y., Zhou, J., Zhang, K., Sun, C. (2007). Gold nanoparticle multilayer films based on surfactant films as a template: preparation, characterization, and application. Journal of Chemical Physics, 126, 094706.

    Article  Google Scholar 

  35. Leunissen, J. L. M., & DeMey, J. R. (1989). Preparation of gold probes. In A. J. Verkleij & J. L. M. Leunissen (Eds.), Immuno-gold labeling in cell biology (pp. 3–16). Boca Raton, FL: CRC.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by RFBR grant 12-04-31329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria V. Shumyantseva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shumkov, A.A., Suprun, E.V., Shatinina, S.Z. et al. Gold and Silver Nanoparticles for Electrochemical Detection of Cardiac Troponin I Based on Stripping Voltammetry. BioNanoSci. 3, 216–222 (2013). https://doi.org/10.1007/s12668-013-0090-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0090-9

Keywords

Navigation