Skip to main content
Log in

The Making of “on-Chip PCR in Real-Time” for Food Quality Control

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Economical, religious, and health reasons demand an accurate control of food in order to protect consumers from falsely labeled products. Meat in particular is easily susceptible to fraudulent labeling, mainly through contamination with species of lower value. New methods and protocols for rapid, sensitive and reliable identification of extraneous species in food are therefore required. The miniaturization and optimization of analytical methodologies are powerful tools in this direction, especially when connected to Lab-on-a-chip (LOC) microdevices. LOCs possess many advantages, such as the reduction of the analysis cost, the possibility to save time and labor, the easiness of use and not last, the possibility to bring a complex technique out of the laboratory. Here we present a new concept for the food quality control, i.e. the use of LOC for the detection of exogenous DNA in meat via on-chip PCR in real-time. LOC surfaces were treated with different coatings in order to optimize the DNA extraction directly from meat homogenates (bovine, pork, horse). On the same LOC used for DNA purification, we set up the on-chip PCR with real-time detection. Over 1,000 beef genomes, up to 0.01 horse or pork genomes were successfully detected in binary mixtures of pre-purified DNA and similarly, up to 0.01 % parts of exogenous meat were detected in binary mixtures of meat homogenates. The successful on-chip detection of exogenous DNA is a promising step toward the production of an effective microdevice for rapid, sensitive, and reliable identification of meat adulteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haunshi, S., Basumatary, R., Girish, P. S., Doley, S., Bardoloi, R. K., Kumar, A. (2009). Identification of chicken, duck, pigeon and pig meat by species-specific markers of mitochondrial origin. Meat Science, 83, 454–459.

    Article  Google Scholar 

  2. Hellberg, R. S. R., & Morrissey, M. T. (2011). Advances in DNA-based techniques for the detection of seafood species substitution on the commercial market. Journal of Laboratory Automation, 16, 308–321.

    Article  Google Scholar 

  3. Yin, R. H., Bai, W. L., Wang, J. M., Wu, C. D., Dou, Q. L., Yin, R. L., et al. (2009). Development of an assay for rapid identification of meat from yak and cattle using polymerase chain reaction technique. Meat Science, 83, 38–44.

    Article  Google Scholar 

  4. Rojas, M., González, I., Pavón, M. A., Pegels, N., Hernández, P. E., García, T., et al. (2010). Polymerase chain reaction assay for verifying the labeling of meat and commercial meat products from game birds targeting specific sequences from the mitochondrial D-loop region. Poultry Science, 89, 1021–1032.

    Article  Google Scholar 

  5. Murugaiah, C., Noor, Z. M., Mastakim, M., Bilung, L. M., Selamat, J., Radu, S. (2009). Meat species identification and Halal authentication analysis using mitochondrial DNA. Meat Science, 83, 57–61.

    Article  Google Scholar 

  6. Unajak, S., Meesawat, P., Anyamaneeratch, K., Anuwareepong, D., Srikulnath, K., Choowongkomon, K. (2011). Identification of species (meat and blood samples) using nested-PCR analysis of mitochondrial DNA. African Journal of Biotechnology, 10(29), 5670–5676.

    Google Scholar 

  7. Kesmen, Z., Gulluce, A., Sahin, F., Yetim, H. (2009). Identification of meat species by TaqMan-based real-time PCR assay. Meat Science, 82, 444–449.

    Article  Google Scholar 

  8. Rojas, M., González, I., Pavón, M. Á., Pegels, N., Hernández, P. E., García, T., et al. (2011). Development of a real-time PCR assay to control the illegal trade of meat from protected capercaillie species (Tetrao urogallus). Forensic Science International, 210, 133–138.

    Article  Google Scholar 

  9. Dalton, D. L., & Kotze, A. (2011). DNA barcoding as a tool for species identification in three forensic wildlife cases in South Africa. Forensic Science International, 207, e51–e54.

    Article  Google Scholar 

  10. Ali, M. E., Hashim, U., Mustafa, S., Man, Y. B. C., Yusop, M. H. M., Bari, M. F., et al. (2011). Nanoparticle sensor for label free detection of swine DNA in mixed biological samples. Nanotechnology, 22, 195503.

    Article  Google Scholar 

  11. Zhang, C., & Xing, D. (2010). Single-molecule DNA amplification and analysis using microfluidics. Chemical Reviews, 110, 4910–4947.

    Article  Google Scholar 

  12. Kovarik, M. L., Gach, P. C., Ornoff, D. M., Wang, Y., Balowski, J., Farrag, L., et al. (2012). Micro total analysis systems for cell biology and biochemical assays. Analytical Chemistry, 84(2), 516–540.

    Article  Google Scholar 

  13. Li, Z., Han, D. K., Brokken-Zijp, J. C., de With, G., Thne, P. C. (2006). Surface properties of poly(dimethylsiloxane)-based inorganic/organic hybrid materials. Polymer, 47, 1150–1158.

    Article  Google Scholar 

  14. Crevillén, A. G., Hervás, M., López, M. A., González, M. C., Escarpa, A. (2007). Real sample analysis on microfluidic devices. Talanta, 74, 342–357.

    Article  Google Scholar 

  15. Han, S. W., Joo, S. W., Ha, T. H., Kim, Y., Kim, K. (2000). Adsorption characteristics of anthraquinone-2-carboxylic acid on gold. The Journal of Physical Chemistry. B, 104, 11987–11995.

    Article  Google Scholar 

  16. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9, 676–682.

    Article  Google Scholar 

  17. Sharma, S., Johnson, R. W., Desai, T. A. (2004). XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosensors and Bioelectronics, 20, 227–239.

    Article  Google Scholar 

  18. Popat, K. C., Sharma, S., Desai, T. A. (2004). Quantitative XPS analysis of PEG-modified silicon surfaces. The Journal of Physical Chemistry. B, 108, 5185–5188.

    Article  Google Scholar 

  19. Ballin, N. Z., Vogensen, F. K., Karlsson, A. H. (2012). PCR amplification of repetitive sequences as a possible approach in relative species quantification. Meat Science, 90, 438–443.

    Article  Google Scholar 

  20. Potrich, C., Lunelli, L., Pasquardini, L., Sonn, D., Vozzi, D., Dallapiccola, R., et al. (2012). One-shot genetic analysis in monolithic silicon/Pyrex microdevices. Biomedical Microdevices. doi:10.1007/s10544-012-9676-1.

  21. Govindarajan, A. V., Ramachandran, S., Vigil, G. D., Yager, P., Boehringer, K. F. (2012). A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab on a Chip, 12, 174–181.

    Article  Google Scholar 

  22. Xu, G., Lee, D. Y. S., Xie, H., Chiew, D., Hsieh, T.-M., Ali, E. M., et al. (2011). A self-contained polymeric cartridge for automated biological sample preparation. Biomicrofluidics, 5, 034107.

    Article  Google Scholar 

  23. Hoffmann, J., Mark, D., Lutz, S., Zengerle, R., von Stetten, F. (2010). Pre-storage of liquid reagents in glass ampoules for DNA extraction on a fully integrated lab-on-a-chip cartridge. Lab on a Chip, 10, 1480–1484.

    Article  Google Scholar 

  24. Nakagawa, T., Tanaka, T., Niwa, D., Osaka, T., Takeyama, H., Matsunaga, T. (2005). Fabrication of amino silane-coated microchip for DNA extraction from whole blood. Journal of Biotechnology, 116, 105–111.

    Article  Google Scholar 

  25. Pasquardini, L., Lunelli, L., Potrich, C., Marocchi, L., Fiorilli, S., Vozzi, D., et al. (2011). Organo-silane coated substrates for DNA purification. Applied Surface Science, 257, 10821–10827.

    Article  Google Scholar 

  26. Emmenegger, C. R., Brynda, E., Riedel, T., Sedlakova, Z., Houska, M., Alles, A. B. (2009). Interaction of blood plasma with antifouling surfaces. Langmuir, 25(11), 6328–6333.

    Article  Google Scholar 

  27. Michel, R., Pasche, S., Textor, M., Castner, D. G. (2005). Influence of PEG architecture on protein adsorption and conformation. Langmuir, 21, 12327–12332.

    Article  Google Scholar 

  28. Pasquardini, L., Potrich, C., Quaglio, M., Lamberti, A., Guastella, S., Lunelli, L., et al. (2011). Solid phase DNA extraction on PDMS and direct amplification. Lab on a Chip, 11, 4029–4035.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Olivetti I-Jet for substrate and microchip provision. We are also grateful to Dr. Vanzetti for XPS support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Potrich.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potrich, C., Santini, G.C., Lunelli, L. et al. The Making of “on-Chip PCR in Real-Time” for Food Quality Control. BioNanoSci. 3, 123–131 (2013). https://doi.org/10.1007/s12668-013-0080-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0080-y

Keywords

Navigation