Skip to main content
Log in

Aqueous Synthesis of l-Cysteine Stabilized Water-Dispersible CdS:Mn Quantum Dots for Biosensing Applications

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The present work reports the aqueous synthesis of l-cysteine (2-amino 3-mercaptopropionic acid) capped manganese-doped cadmium sulphide quantum dots (QDs). l-Cysteine functions both as a sulfur source and the stabilizer during the synthesis. The product collected at different time intervals during the reaction showed red shifts in their absorption onsets (peak shifts 380 → 395 → 420 nm) and respective emission (peak shifts 585 → 610 → 660 nm) onsets. Nanoparticles of the average size of 3 ± 0.5 nm were obtained. Based on the theoretical calculations, the maximum band gap energy of the synthesized nanocrystals is found to be 2.83 eV. Fourier transform infrared and Raman spectroscopic studies have confirmed the presence of carboxylic and amine functional groups. Atomic force and electron microscopic techniques have verified the formation of the nanosized QDs. Energy dispersive X-ray spectrometry has confirmed the doping of manganese in the CdS structure, while X-ray diffractometry established the crystal structure as of zinc blend type. The proposed l-cysteine capped CdS:Mn QDs can be termed as multifunctional crystals, which are useful for the assembly of fluorescent molecular probes for clinical analysis and disease diagnosis. The proposed nanocrystals can also be potentially used as contrast agents in the magnetic resonance imaging due to the presence of manganese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), 538–544. doi:10.1126/science.1104274.

    Article  Google Scholar 

  2. Kumar, P., Deep, A., Sharma, S. C., Bharadwaj, L. M. (2012). Bioconjugation of InGaP quantum dots for molecular sensing. Analytical Biochemistry, 421(1), 285–290. doi:10.1016/j.ab.2011.10.037.

    Article  Google Scholar 

  3. Chen, Y., & Rosenzweig, Z. (2002). Luminescent CdS quantum dots as selective ion probes. Analytical Chemistry, 74(19), 5132–5138. doi:10.1021/ac0258251.

    Article  Google Scholar 

  4. Yu, W. W., & Peng, X. (2002). Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angewandte Chemie, International Edition, 41(13), 2368–2371. doi:10.1002/1521-3773(20020703)41.

    Article  Google Scholar 

  5. Sun, W.-T., Yu, Y., Pan, H.-Y., Gao, X.-F., Chen, Q., Peng, L.-M. (2008). CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal of the American Chemical Society, 130(4), 1124–1125. doi:10.1021/ja0777741.

    Article  Google Scholar 

  6. Li, H., Shih, W. Y., Shih, W.-H. (2007). Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications. Industrial and Engineering Chemistry Research, 46(7), 2013–2019. doi:10.1021/ie060963s.

    Article  Google Scholar 

  7. De, M., Ghosh, P. S., Rotello, V. M. (2008). Applications of nanoparticles in biology. Advanced Materials, 20(22), 4225–4241. doi:10.1002/adma.200703183.

    Article  Google Scholar 

  8. Li, Z., & Du, Y. (2003). Biomimic synthesis of CdS nanoparticles with enhanced luminescence. Materials Letters, 57(16–17), 2480–2484. doi:10.1016/s0167-577x(02)01297-1.

    Article  Google Scholar 

  9. Murray, C. B., Norris, D. J., Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 115(19), 8706–8715. doi:10.1021/ja00072a025.

    Article  Google Scholar 

  10. Peng, Z. A., & Peng, X. (2000). Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society, 123(1), 183–184. doi:10.1021/ja003633m.

    Article  Google Scholar 

  11. Foglia, S., Suber, L., Righini, M. (2001). Size tailoring of CdS nanoparticles by different colloidal chemical techniques. Colloids and Surfaces Physicochemical and Engineering Aspects, 177(1), 3–12. doi:10.1016/s0927-7757(00)00673-7.

    Article  Google Scholar 

  12. Silva, G.A. (2009). Quantum dot nanotechnologies for neuroimaging. In HS Sharma (Ed.), Nanoneuroscience and Nanoneuropharmacology, vol 180. Progress in Brain Research (pp 19–34). doi:10.1016/s0079-6123(08)80002-7

  13. Santra, S., Yang, H., Holloway, P. H., Stanley, J. T., Mericle, R. A. (2005). Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. Journal of the American Chemical Society, 127(6), 1656–1657. doi:10.1021/ja0464140.

    Article  Google Scholar 

  14. Ladizhansky, V., & Vega, S. (2000). Doping of CdS nanoparticles by Co2+ ions studied by NMR. The Journal of Physical Chemistry. B, 104(22), 5237–5241. doi:10.1021/jp993951b.

    Article  Google Scholar 

  15. Yang, Y., Chen, O., Angerhofer, A., Cao, Y. C. (2006). Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. Journal of the American Chemical Society, 128(38), 12428–12429. doi:10.1021/ja064818h.

    Article  Google Scholar 

  16. Galicka, M., Buczko, R., Kacman, P. (2011). Structure-dependent ferromagnetism in Mn-doped III–V nanowires. Nano Letters, 11(8), 3319–3323. doi:10.1021/nl201687q.

    Article  Google Scholar 

  17. Yang, H., & Holloway, P. H. (2003). Electroluminescence from hybrid conjugated polymer CdS:Mn/ZnS core/shell nanocrystals devices. The Journal of Physical Chemistry. B, 107(36), 9705–9710. doi:10.1021/jp034749i.

    Article  Google Scholar 

  18. Nag, A., & Sarma, D. D. (2007). White light from Mn2+-doped CdS nanocrystals: a new approach. Journal of Physical Chemistry C, 111(37), 13641–13644. doi:10.1021/jp074703f.

    Article  Google Scholar 

  19. Cao, L., Qu, H., Sun, D., Su, G., Liu, W., Sun, Y. (2009). Solvothermal synthesis and luminescence properties of CdS:Mn nanorods. Science in China Series B: Chemistry, 52(12), 2134–2140. doi:10.1007/s11426-009-0170-4.

    Article  Google Scholar 

  20. Levy, L., Feltin, N., Ingert, D., Pileni, M. P. (1999). Isolated Mn2+ in CdS quantum dots. Langmuir, 15(10), 3386–3389. doi:10.1021/la981633i.

    Article  Google Scholar 

  21. Yang, Y., Chen, O., Angerhofer, A., Cao, Y. C. (2006). Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. Journal of the American Chemical Society, 128(38), 12428–12429. doi:10.1021/ja064818h.

    Article  Google Scholar 

  22. Yang, Y., Chen, O., Angerhofer, A., Cao, Y. C. (2008). On doping CdS/ZnS core/shell nanocrystals with Mn. Journal of the American Chemical Society, 130(46), 15649–15661. doi:10.1021/ja805736k.

    Article  Google Scholar 

  23. Counio, G., Gacoin, T., Boilot, J. P. (1998). Synthesis and photoluminescence of Cd1-xMnxS (x ≤ 5) nanocrystals. The Journal of Physical Chemistry. B, 102(27), 5257–5260. doi:10.1021/jp980511w.

    Article  Google Scholar 

  24. Mederos, A., Saysell, D. M., Sanchiz, J., Sykes, A. G. (1998). Potentiometric studies on the formation and dissociation of the l-cysteine complexes of di-μ-sulfido and di-μ-oxo molybdenum (V) [Mo2O2(μ-S)2(cys)2]2− and [Mo2O2(μ-O)2(cys)2]2−. Journal of the Chemical Society Dalton Transactions, 16, 2723–2725. doi:10.1039/A802002G.

    Article  Google Scholar 

  25. Zhou, M., Nakatani, E., Gronenberg, L. S., Tokimoto, T., Wirth, M. J., Hruby, V. J., et al. (2007). Peptide-labeled quantum dots for imaging GPCRs in whole cells and as single molecules. Bioconjugate Chemistry, 18(2), 323–332. doi:10.1021/bc0601929.

    Article  Google Scholar 

  26. Buchholz, D. B., Proffit, D. E., Wisser, M. D., Mason, T. O., Chang, R. P. H. (2012). Electrical and band-gap properties of amorphous zinc–indium–tin oxide thin films. Progress in Natural Science: Materials International, 22(1), 1–6. doi:10.1016/j.pnsc.2011.12.001.

    Article  Google Scholar 

  27. Mansur, H. S., & Mansur, A. A. P. (2011). CdSe quantum dots stabilized by carboxylic-functionalized PVA: synthesis and UV–vis spectroscopy characterization. Materials Chemistry and Physics, 125(3), 709–717. doi:10.1016/j.matchemphys.2010.09.068.

    Article  MathSciNet  Google Scholar 

  28. Zhang, L. Z., Sun, W., Peng, C. (2003). Spectroscopic and theoretical studies of quantum and electronic confinement effects in nanostructured materials. Molecules, 8(1), 207–222. doi:10.3390/80100207.

    Article  Google Scholar 

  29. Mizel, A., & Cohen, M. L. (1997). Electronic energy levels in semiconductor nanocrystals: a Wannier function approach. Physical Review B, 56(11), 6737–6741. doi:10.1103/PhysRevB.56.6737.

    Article  Google Scholar 

  30. Sobhana, S. S. L., Devi, M. V., Sastry, T. P., Mandal, A. B. (2011). CdS quantum dots for measurement of the size-dependent optical properties of thiol capping. Journal of Nanoparticle Research, 13(4), 1747–1757. doi:10.1007/s11051-010-9934-1.

    Article  Google Scholar 

  31. Andreas, F. T. (2006). Size-dependent band gap of colloidal quantum dots. Journal of Applied Physics, 99, 013708. doi:10.1063/1.2158502.

    Article  Google Scholar 

  32. Barglik-Chory, C., Buchold, D., Schmitt, M., Kiefer, W., Heske, C., Kumpf, C., et al. (2003). Synthesis, structure and spectroscopic characterization of water-soluble CdS nanoparticles. Chemical Physics Letters, 379(5–6), 443–451. doi:10.1016/j.cplett.2003.08.068.

    Article  Google Scholar 

  33. Zhang, J., Sun, L., Liao, C., Yan, C. (2002). Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method. Solid State Communication, 124(1–2), 45–48. doi:10.1016/S0038-1098(02)00448-9.

    Article  Google Scholar 

  34. Haj Mohamed, N. B., Haouari, M., Jaballah, N., Bchetnia, A., Hriz, K., Majdoub, M., et al. (2012). Optical and IR study of CdS nanoparticles dispersed in a new confined p-phenylenevinylene. Physica B: Condensed Matter, 407(18), 3849–3855. doi:10.1016/j.physb.2012.06.004.

    Article  Google Scholar 

  35. Abdulkhadar, M., & Thomas, B. (1995). Study of Raman spectra of nanoparticles of CdS and ZnS. Nanostructured Materials, 5(3), 289–298. doi:10.1016/0965-9773(95)00237-9.

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (Parveen Kumar) is grateful to the Indian Council of Medical Research, New Delhi, India for providing the Senior Research Fellowship. Thanks are due to the Director, CSIO Chandigarh, India for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Deep.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Kumar, P., Bharadwaj, L.M. et al. Aqueous Synthesis of l-Cysteine Stabilized Water-Dispersible CdS:Mn Quantum Dots for Biosensing Applications. BioNanoSci. 3, 95–101 (2013). https://doi.org/10.1007/s12668-013-0078-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0078-5

Keywords

Navigation