Skip to main content
Log in

Simulation of Protein–Surface Interactions by a Coarse-Grained Method

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The interaction between proteins and inorganic surfaces or nanoparticles is important for several aspects of bionanoscience, ranging from the interaction of nanoparticles with living biosystems to the use of surface-immobilized proteins as elements of sensing devices. Atomistic simulations of the interaction between proteins and inorganic surfaces can provide a microscopic picture behind such interactions. At present, classical molecular dynamics simulations, explicitly including all atoms of the systems and the water solvent, represent the best compromise between computational cost and accuracy in the description of the systems. Nevertheless, the time scale that can be routinely investigated with these methods is still limited to tens of nanoseconds. Coarse-grained models, where many protein atoms are condensed in a single effective particle, can extend this time scale by orders of magnitude. Here, we demonstrate how a recently proposed coarse-graining scheme can be used to simulate ubiquitin (a small model protein ubiquitous in eukaryotic cells) on gold surfaces in water. In particular, we verify that the coarse-grained model gives results coherent with those obtained with the fully atomistic simulations, at a much smaller computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gray, J. J. (2004). The interaction of proteins with solid surfaces. Current Opinion in Structural Biology, 14, 110–115. and refs therein.

    Article  Google Scholar 

  2. Kacar, T., Zin, M. T., So, C., Wilson, B., Ma, H., Gul-Karaguler, N., et al. (2009). Directed self-immobilization of alkaline phosphatase on micro-patterned substrates via genetically-fused metal-binding peptide. Biotechnology and Bioengineering, 103, 696–705.

    Article  Google Scholar 

  3. Angione, M. D., Cotrone, S., Magliulo, M., Mallardi, A., Altamura, D., Giannini, C., et al. (2012). Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors. Proceedings of the National Academy of Sciences, 109, 6429–6434.

    Article  Google Scholar 

  4. Maruccio, G., Biasco, A., Visconti, P., et al. (2005). Towards protein field-effect transistors: report and model of a prototype. Advanced Materials, 17, 816–822.

    Article  Google Scholar 

  5. Sarikaya, M., et al. (2003). Nature Materials, 2, 577. and refs. therein.

    Article  Google Scholar 

  6. Nel, A., Xia, T., Mädler, L., Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.

    Article  Google Scholar 

  7. Vecchio, G., Galeone, A., Brunetti, V., Maiorano, G., Sabella, S., Cingolani, R., et al. (2012). Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster. PloS One, 7, e29980.

    Article  Google Scholar 

  8. Chen, X., Gambhir, S. S., Cheon, J. (2011). Theranostic nanomedicine. Accounts of Chemical Research, 44, 841–841.

    Article  Google Scholar 

  9. Mahmoudi, M., et al. (2011). Protein–nanoparticle interactions: opportunities and challenges. Chemistry Review, 111, 5610–5637.

    Article  Google Scholar 

  10. Lacerda, S. H. D. P., et al. (2010). Interaction of gold nanoparticles with common human blood proteins. ACS Nano, 4, 365–379.

    Article  Google Scholar 

  11. Lynch, I., Dawson, K. A., Linse, S. (2006). Detecting cryptic epitopes created by nanoparticles. Sciences STKE pe14.

  12. Treuel, L., Malissek, M., Gebauer, J. S., Zellner, R. (2010). The influence of surface composition of nanoparticles on their interactions with serum albumin. ChemPhysChem, 11, 3093–3099.

  13. Casals, E., Pfaller, T., Duschl, A., Oostingh, G. J., Puntes, V. (2010). Time evolution of the nanoparticle protein corona. ACS Nano, 4, 3623–3632.

    Article  Google Scholar 

  14. Maiorano, G., Sabella, S., Sorce, B., et al. (2010). Effects of cell culture media on the dynamic formation of protein–nanoparticle complexes and influence on the cellular response. ACS Nano, 4, 7481–7491.

    Article  Google Scholar 

  15. Tsai, D. H., et al. (2011). Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir, 27, 2464–2477.

    Article  Google Scholar 

  16. Monopoli, M. P., et al. (2011). Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. Journal of the American Chemical Society, 133, 2525–2534.

    Article  Google Scholar 

  17. Aubin-Tam, M. E., Hwang, W., Hamad-Schifferli, K. (2009). Proceedings of the National Academy of Sciences, 106, 4095–4100.

    Article  Google Scholar 

  18. Goobes, G., Goobes, R., Schueler-Furman, O., Baker, D., Stayton, P. S., Drobny, G. P. (2006). Folding of the C-terminal bacterial binding domain in statherin upon adsorption onto hydroxyapatite crystals. Proceedings of the National Academy of Sciences, 103, 16083–16088.

    Article  Google Scholar 

  19. Baugh, L., Weidner, T., Baio, J. E., et al. (2010). Probing the orientation of surface-immobilized protein G B1 using ToF-SIMS, sum frequency generation, and NEXAFS spectroscopy. Langmuir, 26, 16434–16441.

    Article  Google Scholar 

  20. Liu, Y., Jasensky, J., Chen, Z. (2012). Molecular interactions of proteins and peptides at interfaces studied by sum frequency generation vibrational spectroscopy. Langmuir, 28, 2113–2121.

    Article  Google Scholar 

  21. Cohavi, O., Corni, S., De Rienzo, F., et al. (2009). Protein–surface interactions: challenging experiments and computations. Journal of Molecular Recognition, 23, 259–262.

    Google Scholar 

  22. Di Felice, R., & Corni, S. (2011). Simulation of peptide–surface recognition. Journal of Physical Chemistry Letters, 2, 1510–1519.

    Article  Google Scholar 

  23. Latour, R. A. (2008). Molecular simulation of protein–surface interactions: benefits, problems, solutions and future directions. Biointerphases, 3, FC2–FC12.

    Article  Google Scholar 

  24. Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., et al. (2010). Atomic-level characterization of the structural dynamics of proteins. Science, 330, 341–346.

    Article  Google Scholar 

  25. Qin, Z., & Buehler, M. J. (2011). Structure and dynamics of human vimentin intermediate filament dimer and tetramer in explicit and implicit solvent models. Journal of Molecular Modelling, 17, 37–48.

    Article  Google Scholar 

  26. Kokh, D. B., Corni, S., Winn, P. J., et al. (2010). ProMetCS: an atomistic force field for modeling protein–metal surface interactions in a continuum aqueous solvent. Journal of Chemical Theory and Computation, 6, 1753–1768.

    Article  Google Scholar 

  27. Tomasio, S. M., & Walsh, T. R. (2009). Modeling the binding affinity of peptides for graphitic surfaces. Influences of aromatic content and interfacial shape. Journal of Physical Chemistry C, 113, 8778–8785.

    Article  Google Scholar 

  28. Cranford, S., & Buehler, M. J. (2010). Coarse-graining parameterization and multiscale simulation of hierarchical systems: Part I: Theory and model formulation. In P. Derosa & T. Cagin (Eds.), Multiscale modeling: from atoms to devices. London: Taylor and Francis.

    Google Scholar 

  29. Tozzini, V. (2010). Multiscale modeling of proteins. Accounts of Chemical Research, 43, 220–230. doi:10.1021/ar9001476.

    Article  Google Scholar 

  30. Tozzini, V. (2010). Minimalist models for proteins: a comparative analysis. Quarterly Reviews of Biophysics, 43, 333–371.

    Article  Google Scholar 

  31. Calzolai, L., Franchini, F., Gilliland, D., Rossi, F. (2010). Protein–nanoparticle interaction: identification of the ubiquitin–gold nanoparticle interaction site. Nano Letters, 10, 3101–3105.

    Article  Google Scholar 

  32. Vijay-Kumar, S., Bugg, C. E., Cook, W. J. (1987). Structure of ubiquitin refined at 1.8 Å resolution. Journal of Molecular Biology, 194, 531–544.

    Article  Google Scholar 

  33. Cornilescu, G., Marquardt, J. L., Ottiger, M., Bax, A. (1998). Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. Journal of the American Chemical Society, 120, 6836–6837.

    Article  Google Scholar 

  34. Sperling, R. A., Rivera Gil, P., Zhang, F., Zanella, M., Parak, W. J. (2008). Biological applications of gold nanoparticles. Chemical Society Reviews, 37, 1896–1908.

    Article  Google Scholar 

  35. Boisselier, E., & Astruc, D. (2009). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews, 38, 1759–1782.

    Article  Google Scholar 

  36. Carrillo, O., Laughton, C., Orozco, M. (2009). Fast atomistic molecular dynamics simulations from essential dynamics samplings. Journal of Chemical Theory and Computation, 8, 792–799.

    Article  Google Scholar 

  37. Iori, F., Di Felice, R., Molinari, E., et al. (2009). GolP: an atomistic force-field to describe the interaction of proteins with Au (111) surfaces in water. Journal of Computational Chemistry, 30, 1465–1476.

    Article  Google Scholar 

  38. Amadei, A., Linssen, A. B. M., Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins, 17, 412–425.

    Article  Google Scholar 

  39. Jorgensen, W. L., Maxwell, D. S., Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118, 11225–11236.

    Article  Google Scholar 

  40. Creighton, T. E. (1994). Proteins structure and molecular properties. New York: WH Freeman and Co.

    Google Scholar 

  41. Brancolini, G., Kokh, D., Wade, R. C., et al. (2012). Docking of ubiquitin to gold nanoparticles. ACS Nano, 6, 9863–9878.

    Article  Google Scholar 

  42. Emperador, A., Carrillo, O., Rueda, M., Orozco, M. (2008). Exploring the suitability of coarse-grained techniques for the representation of protein dynamics. Biophysical Journal, 95, 2127–2138.

    Article  Google Scholar 

  43. SDA Simulation of Diffusional Association ver. 6.00. http://projects.villabosch.de/mcm/software/SDA. Accessed 7 Jan 2013.

  44. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E. (2008). GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.

    Article  Google Scholar 

  45. Rueda, M., Chacón, P., & Orozco, M. (2007). Thorough validation of protein normal mode analysis: a comparative study with essential dynamics. Structure, 5, 565–575.

    Article  Google Scholar 

Download references

Acknowledgments

OCP thanks Prof. Modesto Orozco for useful discussions. We gratefully acknowledge IIT Platform Computational for funding through the IIT Seed project MOPROSURF, and the MIUR through the FIRB project Italnanonet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Corni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo-Parramon, O., Brancolini, G. & Corni, S. Simulation of Protein–Surface Interactions by a Coarse-Grained Method. BioNanoSci. 3, 12–20 (2013). https://doi.org/10.1007/s12668-012-0073-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-012-0073-2

Keywords

Navigation