Advertisement

BioNanoScience

, Volume 2, Issue 4, pp 305–315 | Cite as

Microsystem for Stem Cell-Based Cardiovascular Research

  • Huaxiao Yang
  • Zhen MaEmail author
Article

Abstract

The emergence of microsystem offers a tool to analyze the biophysical and biochemical functions of individual cells for biosensing, disease diagnostics, drug screening, and fundamental research. With the rapid expansion and eager need for stem cell-based regenerative medicine, introducing microsystem to stem cell research allows locating, culturing, and reprogramming stem cells under a highly controlled microenvironment, including geometrical restriction, surface biochemistry, extracellular matrix (ECM) composites, and cell–cell interactions. This review focused on the application of microtechnology in stem cell-based cardiovascular research to discuss the creation of biomimetic cardiac microenvironment and its influence on stem cell cardiomyogenic differentiation and stem cell–cardiomyocyte interaction. This review was divided into four sections: three-dimensional tissue construction, two-dimensional cell alignment, single-cell micropatterning and analysis, and development of advanced microsystem “heart-on-a-chip”.

Keywords

Stem cell biology Regenerative medicine Cardiac tissue engineering Cell patterning Microsystem Heart on a chip 

References

  1. 1.
    Ghafar-Zadeh, E., Waldeisen, J. R., & Lee, L. P. (2011). Engineered approaches to the stem cell microenvironment for cardiac tissue regeneration. Lab on a Chip, 11, 3031–3048.CrossRefGoogle Scholar
  2. 2.
    Oettgen, P., Boyle, A. J., Schulman, S. P., & Hare, J. M. (2006). Cardiac stem cell therapy. Need for optimization of efficacy and safety monitoring. Circulation, 114, 353–358.CrossRefGoogle Scholar
  3. 3.
    Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., et al. (2003). Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 107, 2733–2740.CrossRefGoogle Scholar
  4. 4.
    Penn, M. S., & von Recum, H. A. (2011). A tale of 2 biologies: stem cell patch: myocardial interactions are critical for myocardial regeneration. Journal of the American College of Cardiology, 58, 2128–2129.CrossRefGoogle Scholar
  5. 5.
    Bel, A., Planat-Bernard, V., Saito, A., Bonnevie, L., Bellamy, V., Sabbah, L., et al. (2010). Composite cell sheets: a further step toward safe and effective myocardial regeneration by cardiac progenitors derived from embryonic stem cells. Circulation, 122, S118–123.CrossRefGoogle Scholar
  6. 6.
    Valarmathi, M. T., Goodwin, R. L., Fuseler, J. W., Davis, J. M., Yost, M. J., & Potts, J. D. (2010). A 3-D cardiac muscle construct for exploring adult marrow stem cell based myocardial regeneration. Biomaterials, 31, 3185–3200.CrossRefGoogle Scholar
  7. 7.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.CrossRefGoogle Scholar
  8. 8.
    Laflamme, M. A., Gold, J., Xu, C., Hassanipour, M., Rosler, E., Police, S., et al. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. American Journal of Pathology, 167, 663–671.CrossRefGoogle Scholar
  9. 9.
    Ben-David, U., & Benvenisty, N. (2011). The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews. Cancer, 11, 268–277.CrossRefGoogle Scholar
  10. 10.
    Pfister, O., Mouquet, F., Jain, M., Summer, R., Helmes, M., Fine, A., et al. (2005). CD31- but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circulation Research, 97, 52–61.CrossRefGoogle Scholar
  11. 11.
    Wen, Z. Z., Zheng, S. X., Zhou, C. Q., Wang, J. F., & Wang, T. (2011). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15, 1032–1043.CrossRefGoogle Scholar
  12. 12.
    Sung, J. H., & Shuler, M. L. (2012). Microtechnology for mimicking in vivo tissue environment. Annals of Biomedical Engineering, 40, 1289–1300.CrossRefGoogle Scholar
  13. 13.
    Hwang, Y. S., Chung, B. G., Ortmann, D., Hattori, N., Moeller, H. C., & Khademhosseini, A. (2009). Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proceedings of the National Academy of Sciences of the United States of America, 106, 16978–16983.CrossRefGoogle Scholar
  14. 14.
    Wu, Y., & Zhao, R. C. (2012). The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Reviews, 8, 243–250.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lee, K., Kim, C., Ahn, B., Panchapakesan, R., Full, A. R., Nordee, L., et al. (2009). Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab on a Chip, 9, 709–717.CrossRefGoogle Scholar
  16. 16.
    Di Carlo, D., & Lee, L. P. (2006). Dynamic single-cell analysis for quantitative biology. Analytical Chemistry, 78, 7918–7925.CrossRefGoogle Scholar
  17. 17.
    Moraes, C., Wang, G., Sun, Y., & Simmons, C. A. (2010). A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials, 31, 577–584.CrossRefGoogle Scholar
  18. 18.
    Logothetis, N. K., Augath, M., Murayama, Y., Rauch, A., Sultan, F., Goense, J., et al. (2010). The effects of electrical microstimulation on cortical signal propagation. Nature Neuroscience, 13, 1283–1291.CrossRefGoogle Scholar
  19. 19.
    Serena, E., Figallo, E., Tandon, N., Cannizzaro, C., Gerecht, S., Elvassore, N., et al. (2009). Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Experimental Cell Research, 315, 3611–3619.CrossRefGoogle Scholar
  20. 20.
    Ilkhanizadeh, S., Teixeira, A. I., & Hermanson, O. (2007). Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials, 28, 3936–3943.CrossRefGoogle Scholar
  21. 21.
    Gruene, M., Deiwick, A., Koch, L., Schlie, S., Unger, C., Hofmann, N., Bernemann, I., Glasmacher, B., Chichkov, B. (2010). Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods.Google Scholar
  22. 22.
    Pethig, R., Menachery, A., Pells, S., & De Sousa, P. (2010). Dielectrophoresis: a review of applications for stem cell research. Journal of Biomedicine and Biotechnology, 2010, 182581.CrossRefGoogle Scholar
  23. 23.
    Tan, Y., Kong, C. W., Chen, S., Cheng, S. H., Li, R. A., & Sun, D. (2012). Probing the mechanobiological properties of human embryonic stem cells in cardiac differentiation by optical tweezers. Journal of Biomechanics, 45, 123–128.CrossRefGoogle Scholar
  24. 24.
    McDevitt, T. C., Angello, J. C., Whitney, M. L., Reinecke, H., Hauschka, S. D., Murry, C. E., et al. (2002). In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. Journal of Biomedical Materials Research, 60, 472–479.CrossRefGoogle Scholar
  25. 25.
    Orlova, Y., Magome, N., Liu, L., Chen, Y., & Agladze, K. (2011). Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials, 32, 5615–5624.CrossRefGoogle Scholar
  26. 26.
    Kai, D., Prabhakaran, M. P., Jin, G., & Ramakrishna, S. (2011). Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 98B, 379–386.CrossRefGoogle Scholar
  27. 27.
    Hannachi, I. E., Yamato, M., and Okano, T. (2009). Cell sheet technology and cell patterning for biofabrication. Biofabrication, 1, 022002.Google Scholar
  28. 28.
    Haraguchi, Y., Shimizu, T., Yamato, M., & Okano, T. (2011). Regenerative therapies using cell sheet-based tissue engineering for cardiac disease. Cardiology Research and Practice, 2011, 845170.CrossRefGoogle Scholar
  29. 29.
    Matsuura, K., Masuda, S., Haraguchi, Y., Yasuda, N., Shimizu, T., Hagiwara, N., et al. (2011). Creation of mouse embryonic stem cell-derived cardiac cell sheets. Biomaterials, 32, 7355–7362.CrossRefGoogle Scholar
  30. 30.
    Park, J., Cho, C. H., Parashurama, N., Li, Y., Berthiaume, F., Toner, M., et al. (2007). Microfabrication-based modulation of embryonic stem cell differentiation. Lab on a Chip, 7, 1018–1028.CrossRefGoogle Scholar
  31. 31.
    Mohr, J. C., Zhang, J., Azarin, S. M., Soerens, A. G., de Pablo, J. J., Thomas, J. A., et al. (2010). The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials, 31, 1885–1893.CrossRefGoogle Scholar
  32. 32.
    Aubin, H., Nichol, J. W., Hutson, C. B., Bae, H., Sieminski, A. L., Cropek, D. M., et al. (2010). Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 31, 6941–6951.CrossRefGoogle Scholar
  33. 33.
    Liau, B., Christoforou, N., Leong, K. W., & Bursac, N. (2011). Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials, 32, 9180–9187.CrossRefGoogle Scholar
  34. 34.
    Boudou, T., Legant, W. R., Mu, A., Borochin, M. A., Thavandiran, N., Radisic, M., et al. (2012). A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Engineering. Part A, 18, 910–919.CrossRefGoogle Scholar
  35. 35.
    Engelmayr, G. C., Jr., Cheng, M., Bettinger, C. J., Borenstein, J. T., Langer, R., & Freed, L. E. (2008). Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 7, 1003–1010.CrossRefGoogle Scholar
  36. 36.
    Camelliti, P., Gallagher, J. O., Kohl, P., & McCulloch, A. D. (2006). Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium. Nature Protocols, 1, 1379–1391.CrossRefGoogle Scholar
  37. 37.
    Simpson, D. G., Terracio, L., Terracio, M., Price, R. L., Turner, D. C., & Borg, T. K. (1994). Modulation of cardiac myocyte phenotype in-vitro by the composition and orientation of the extracellular-matrix. Journal of Cellular Physiology, 161, 89–105.CrossRefGoogle Scholar
  38. 38.
    Guillemette, M. D., Park, H., Hsiao, J. C., Jain, S. R., Larson, R., Langer, R., et al. (2010). Combined technologies for microfabricating elastomeric cardiac tissue engineering scaffolds. Macromolecular Bioscience, 10, 1330–1337.CrossRefGoogle Scholar
  39. 39.
    Motlagh, D., Hartman, T. J., Desai, T. A., & Russell, B. (2003). Microfabricated grooves recapitulate neonatal myocyte connexin43 and N-cadherin expression and localization. Journal of Biomedical Materials Research. Part A, 67A, 148–157.CrossRefGoogle Scholar
  40. 40.
    Karp, J. M., Yeo, Y., Geng, W. L., Cannizarro, C., Yan, K., Kohane, D. S., et al. (2006). A photolithographic method to create cellular micropatterns. Biomaterials, 27, 4755–4764.CrossRefGoogle Scholar
  41. 41.
    Pong, T., Adams, W. J., Bray, M. A., Feinberg, A. W., Sheehy, S. P., Werdich, A. A., et al. (2011). Hierarchical architecture influences calcium dynamics in engineered cardiac muscle. Experimental Biology and Medicine, 236, 366–373.CrossRefGoogle Scholar
  42. 42.
    Cimetta, E., Pizzato, S., Bollini, S., Serena, E., De Coppi, P., & Elvassore, N. (2009). Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate. Biomedical Microdevices, 11, 389–400.CrossRefGoogle Scholar
  43. 43.
    Camelliti, P., McCulloch, A. D., & Kohl, P. (2005). Microstructured cocultures of cardiac myocytes and fibroblasts: a two-dimensional in vitro model of cardiac tissue. Microscopy and Microanalysis, 11, 249–259.CrossRefGoogle Scholar
  44. 44.
    Khademhosseini, A., Eng, G., Yeh, J., Kucharczyk, P. A., Langer, R., Vunjak-Novakovic, G., et al. (2007). Microfluidic patterning for fabrication of contractile cardiac organoids. Biomedical Microdevices, 9, 149–157.CrossRefGoogle Scholar
  45. 45.
    Thomas, S. P., Bircher-Lehmann, L., Thomas, S. A., Zhuang, J. P., Saffitz, J. E., & Kleber, A. G. (2000). Synthetic strands of neonatal mouse cardiac myocytes—structural and electrophysiological properties. Circulation Research, 87, 467–473.CrossRefGoogle Scholar
  46. 46.
    Ma, Z., Liu, Q., Liu, H., Yang, H., Yun, J. X., Eisenberg, C., et al. (2012). Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses. Lab on a Chip, 12, 566–573.CrossRefGoogle Scholar
  47. 47.
    Gopalan, S. M., Flaim, C., Bhatia, S. N., Hoshijima, M., Knoell, R., Chien, K. R., et al. (2003). Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnology and Bioengineering, 81, 578–587.CrossRefGoogle Scholar
  48. 48.
    Parker, K. K., Tan, J., Chen, C. S., & Tung, L. (2008). Myofibrillar architecture in engineered cardiac myocytes. Circulation Research, 103, 340–342.CrossRefGoogle Scholar
  49. 49.
    Bray, M. A., Sheehy, S. P., & Parker, K. K. (2008). Sarcomere alignment is regulated by myocyte shape. Cell Motility and the Cytoskeleton, 65, 641–651.CrossRefGoogle Scholar
  50. 50.
    Geisse, N. A., Sheehy, S. P., & Parker, K. K. (2009). Control of myocyte remodeling in vitro with engineered substrates. In Vitro Cellular & Developmental Biology. Animal, 45, 343–350.CrossRefGoogle Scholar
  51. 51.
    Bray, M. A., Adams, W. J., Geisse, N. A., Feinberg, A. W., Sheehy, S. P., & Parker, K. K. (2010). Nuclear morphology and deformation in engineered cardiac myocytes and tissues. Biomaterials, 31, 5143–5150.CrossRefGoogle Scholar
  52. 52.
    McCain, M. L., Lee, H., Aratyn-Schaus, Y., Kleber, A. G., & Parker, K. K. (2012). Cooperative coupling of cell-matrix and cell–cell adhesions in cardiac muscle. Proceedings of the National Academy of Sciences of the United States of America, 109, 9881–9886.CrossRefGoogle Scholar
  53. 53.
    McCain, M. L., Desplantez, T., Geisse, N. A., Rothen-Rutishauser, B., Oberer, H., Parker, K. K., et al. (2012). Cell-to-cell coupling in engineered pairs of rat ventricular cardiomyocytes: relation between Cx43 immunofluorescence and intercellular electrical conductance. American Journal of Physiology. Heart and Circulatory Physiology, 302, H443–450.CrossRefGoogle Scholar
  54. 54.
    Desplantez, T., McCain, M. L., Beauchamp, P., Rigoli, G., Rothen-Rutishauser, B., Parker, K. K., et al. (2012). Connexin43 ablation in foetal atrial myocytes decreases electrical coupling, partner connexins, and sodium current. Cardiovascular Research, 94, 58–65.CrossRefGoogle Scholar
  55. 55.
    Kaneko, T., Kojima, K., & Yasuda, K. (2007). An on-chip cardiomyocyte cell network assay for stable drug screening regarding community effect of cell network size. Analyst, 132, 892–898.CrossRefGoogle Scholar
  56. 56.
    Pedrotty, D. M., Klinger, R. Y., Badie, N., Hinds, S., Kardashian, A., & Bursac, N. (2008). Structural coupling of cardiomyocytes and noncardiomyocytes: quantitative comparisons using a novel micropatterned cell pair assay. American Journal of Physiology Heart and Circulatory Physiology, 295, H390–400.CrossRefGoogle Scholar
  57. 57.
    Ma, Z., & Gao, B. Z. (2012). Quantitatively analyzing the protective effect of mesenchymal stem cells on cardiomyocytes in single-cell biochips. Biotechnology Letters, 34, 1385–1391.CrossRefGoogle Scholar
  58. 58.
    Ma, Z., Pirlo, R. K., Wan, Q., Yun, J. X., Yuan, X., Xiang, P., et al. (2011). Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning. Biofabrication, 3, 034107.CrossRefGoogle Scholar
  59. 59.
    Ma, Z., Liu, Q., Liu, H., Yang, H., Yun, J. X., Xu, M., et al. (2012). Cardiogenic regulation of stem-cell electrical properties in a laser-patterned biochip. Cellular and Molecular Bioengineering, 5, 327–336.CrossRefGoogle Scholar
  60. 60.
    Moraes, C., Mehta, G., Lesher-Perez, S. C., & Takayama, S. (2012). Organs-on-a-chip: a focus on compartmentalized microdevices. Annals of Biomedical Engineering, 40, 1211–1227.CrossRefGoogle Scholar
  61. 61.
    Grosberg, A., Alford, P. W., McCain, M. L., & Parker, K. K. (2011). Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab on a Chip, 11, 4165–4173.CrossRefGoogle Scholar
  62. 62.
    Effron, M. B., Bhatnagar, G. M., Spurgeon, H. A., Ruano-Arroyo, G., & Lakatta, E. G. (1987). Changes in myosin isoenzymes, ATPase activity, and contraction duration in rat cardiac muscle with aging can be modulated by thyroxine. Circulation Research, 60, 238–245.CrossRefGoogle Scholar
  63. 63.
    Pijnappels, D. A., Schalij, M. J., Ramkisoensing, A. A., van Tuyn, J., de Vries, A. A. F., van der Laarse, A., et al. (2008). Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circulation Research, 103, 167–176.CrossRefGoogle Scholar
  64. 64.
    Kaneko, T., Nomura, F., & Yasuda, K. (2011). On-chip constructive cell-network study (I): contribution of cardiac fibroblasts to cardiomyocyte beating synchronization and community effect. Journal Nanobiotechnology, 9, 21.CrossRefGoogle Scholar
  65. 65.
    Badie, N., Satterwhite, L., & Bursac, N. (2009). A method to replicate the microstructure of heart tissue in vitro using DTMRI-based cell micropatterning. Annals of Biomedical Engineering, 37, 2510–2521.CrossRefGoogle Scholar
  66. 66.
    Badie, N., & Bursac, N. (2009). Novel micropatterned cardiac cell cultures with realistic ventricular microstructure. Biophysical Journal, 96, 3873–3885.CrossRefGoogle Scholar
  67. 67.
    Badie, N., Scull, J. A., Klinger, R. Y., Krol, A., & Bursac, N. (2012). Conduction block in micropatterned cardiomyocyte cultures replicating the structure of ventricular cross-sections. Cardiovascular Research, 93, 263–271.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of BioengineeringClemson UniversityClemsonUSA
  2. 2.Department of BioengineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations