, Volume 2, Issue 4, pp 329–335 | Cite as

Synthesis, Characterization, and Antimicrobial Activity of Zinc Oxide Nanoparticles Against Human Pathogens

  • P. M. Narayanan
  • Wijo Samuel Wilson
  • Ashish Thomas Abraham
  • Murugan SevananEmail author


The development of reliable processes for the synthesis of zinc oxide nanoparticles is an important aspect of nanotechnology today. Zinc oxide nanoparticles comprise well-known inhibitory and bactericidal effects. Emergence of antimicrobial resistance by pathogenic bacteria is a major health problem in recent years. The present study is concerned about the synthesis, characterization of zinc oxide nanoparticles, and their use as antibacterial agent. Zinc oxide nanoparticles were synthesized by chemical (precipitation) method using zinc nitrate and NaOH. The synthesized zinc oxide nanoparticles were characterized with scanning electron microscope and X-ray diffraction analysis. The antimicrobial activity of zinc oxide nanoparticles was tested against human pathogens like Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, and Pseudomonas aeruginosa using well diffusion method. Similarly, the antibacterial activity of standard antibiotics was tested against human pathogens using the disc diffusion method. The efficiency of zinc oxide nanoparticles was compared with that of standard antibiotics. The results showed that zinc oxide nanoparticles have strong antimicrobial activity against all tested pathogens. The antibacterial activity increased with increasing concentration of zinc oxide nanoparticles. The results of the study confirmed that the zinc oxide nanoparticles may serve as promising antibacterial agents.


Zinc oxide nanoparticles Scanning electron microscope X-ray diffraction Antimicrobial activity Human pathogens 



The authors would like to express their gratitude to Dr. Paul Dinakaran, Chancellor, Dr. Paul P. Appasamy, Vice Chancellor, and Dr. Joseph Kennady, Registrar of Karunya University for providing the necessary facilities for carrying out the work.


  1. 1.
    Roman, B., Fallyn, W., Campbell, I., Streeter, L., Xiao, G., Richard, G. (2008). Compton, facile method for the construction of random nanoparticle arrays on a carbon support for the development of well-defined catalytic surfaces. International Journal of Electrochemical Chemical Sciences, 3, 556–565.Google Scholar
  2. 2.
    Abdolmajid, B. M., Kazemzad, M., Reza, M., Dabaghix, H. H. (2008). Improved voltammograms of hydrocaffeic acid on the single-walled carbon nanotube/graphite-film surfaces. International Journal of Electrochemical Chemical Sciences, 3, 291–301.Google Scholar
  3. 3.
    Ken, H., Sugimoto, M., Kato, M., Tsukagoshi, K., Tanigaw, T., Sugimoto, H. (2010). Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Certification International, 36, 497–506.Google Scholar
  4. 4.
    Wei, J., Mashayekhi, H., Xing, B. (2009). Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution, 157, 1619–1625.CrossRefGoogle Scholar
  5. 5.
    Stoimenov, P. K., Klinger, R. L., Marchin, G. L., Klabunde, K. J. (2002). Metal oxide nps as bactericidal agents. Langmuir, 18, 6679–6686.CrossRefGoogle Scholar
  6. 6.
    Fu, G., Vary, P. S., Lin, C. T. (2005). Anatase TiO2 nanocomposites for antimicrobial coating. The Journal of Physical Chemistry. B, 109, 8889–8898.CrossRefGoogle Scholar
  7. 7.
    Brayner, R., Ferrari-lliou, R., Brivois, N., Djediat, S., Benedetti, M. F., Fievet, F. (2006). Toxicological impact studies based of Escherichia coli bacteria in ultrafine ZnO nps colloidal medium. Nano Letters, 6, 866–870.CrossRefGoogle Scholar
  8. 8.
    Makhluf, R., Dror, Y., Nitzan, Y., Abramovich, R., Jelinek, A., Gevanken, A. (2005). Microvave-assisted synthesis of nanocrystalline MgO and its use as bacteriocide. Advanced Functional Materials, 15, 1708–1715.CrossRefGoogle Scholar
  9. 9.
    Hewitt, C. J., Bellara, S. T., Andreani, A., Nebe-von-Caron, G., Mcfarlane, S. T. (2001). An evaluation of the antibacterial action of ceramic powder slurries using multiparameter flow cytometry. Biotechnological Letters, 23, 667–675.CrossRefGoogle Scholar
  10. 10.
    Sawai, J., Shoji, S., Igarashi, H., Ashastimato, A., Kokugan, T., Shimizu, M., et al. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO, CaO) by conductimetric assay. Journal of Microbiological Methods, 54, 177–182.CrossRefGoogle Scholar
  11. 11.
    Nagarajan, P., & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nps—an antimicrobial study. Science and Technology of Advanced Materials, 9, 1–7.Google Scholar
  12. 12.
    Priyanka, G., Brian, P., David, B. W., Wenjie, H., William, J. P., Anne, A. J. (2009). Antimicrobial activities of commercial nanoparticle against an environmental soil microbe, Pseudomonas putida KT2440. Journal of Biological Engineering, 3, 9.CrossRefGoogle Scholar
  13. 13.
    Shriwas, A. S., Aparna, D., Sonali, M., Wankhede, M. E., Jayashree, C., Renu, P., et al. (2005). Synthesis and analysis of ZnO and CdSe nps. Journal of Physics, 65, 615–620.Google Scholar
  14. 14.
    Suzuki, E. (2002). High-resolution scanning electron microscopy of immunogold-labelled cells by the use of thin plasma coating of osmium. Journal of Microscopy, 208, 153–157.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sawai, J., Shoji, S., Igarashi, H., Ashastimato, A., Kokugan, T., Shimizu, M., et al. (1998). Hydrogen peroxide as an antibacterial factor in ZnO powder slurry. Journal of Fermentation and Bioengineering, 86, 521–522.CrossRefGoogle Scholar
  16. 16.
    Abdolmajid, B. M., Tayebe, N., Jalil, B., Mahmood, K. (2009). Synthesis of ZnO nps and electrodeposition of polypyrrole/ZnO nanocomposite film. International Journal of Electrochemical Sciences, 4, 247–257.Google Scholar
  17. 17.
    Boulch, F., Schouler, M. C., Donnadieu, P., Chaix, J. M., Djurado, E. (2001). Domain size distribution of Y-TZP nano-particles using XRD and HRTEM. Image Analysis and Stereology, 20, 157.CrossRefGoogle Scholar
  18. 18.
    Bauer, A. W., Kirby, W. M. M., Sherris, J. C. Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–496.Google Scholar
  19. 19.
    CLSI Document (2006). Performance standards for antimicrobial disk susceptibility tests. Clinical Laboratory Standards Institute, Wayne, PA. M2-A9, 26; 1.Google Scholar
  20. 20.
    Lingling, Z., Yunhong, J., Yulong, D., Malcolm, P., David, Y. (2007). Investigation into the antibacterial behaviour suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9, 479–489.CrossRefGoogle Scholar
  21. 21.
    Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of ZnO. International Journal of Inorganic Materials, 3, 643–646.CrossRefGoogle Scholar
  22. 22.
    Lingling, Z., Yunhong, J., Yulong, D., Nikolaos, D., Lars, J., Malcolm, P., et al. (2010). Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research, 12, 1625–1636.CrossRefGoogle Scholar
  23. 23.
    Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., Punnoose, A. (2007). Selective toxicity of zinc oxide nps to prokaryotic and eukaryotic systems. Applied Physics Letters, 90, 1–3.Google Scholar
  24. 24.
    Feng, Q. L., Wu, J., Chen, G. O., Cui, F. Z., Kim, T. N., Kim, J. O. (2000). A mechanistic study of the antimicrobial effect of silver ions on E. coli and S. aureus. Journal of Biomedical Research, 52, 662–668.CrossRefGoogle Scholar
  25. 25.
    Furno, F., Morley, K. S., Wong, B., Sharp, B. L., Arnold, P. L., Howdle, S. (2004). Silver nps and polymeric medical devices: a new approach to prevention of infection. Journal of Antimicrobial Chemotherapy, 54, 1019–1024.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • P. M. Narayanan
    • 1
  • Wijo Samuel Wilson
    • 1
  • Ashish Thomas Abraham
    • 1
  • Murugan Sevanan
    • 1
    Email author
  1. 1.Department of Biotechnology, School of Biotechnology & Health SciencesKarunya UniversityCoimbatoreIndia

Personalised recommendations