Advertisement

BioNanoScience

, Volume 2, Issue 4, pp 223–226 | Cite as

Reliability Analysis of CNT Contacts with Metal Electrodes

  • Rahul Prajesh
  • Pankaj B. Agarwal
  • Ajay AgarwalEmail author
Article
  • 95 Downloads

Abstract

Contact resistance has always been an issue for semiconducting carbon nanotubes (CNT). This paper presents a comparative study on open-ended semiconducting carbon nanotube (4, 0) two-probe systems with metal electrodes of platinum, copper and gold. The local density of states and transmission coefficients has been calculated to explain the electronic structure and transmission properties of two-probe systems. Contact resistance for each two-probe system has been derived from their current–voltage characteristics. Calculations are based on first-principle quantum mechanical density functional, matrix Green’s function methods and Landauer–Buttiker formula. Contact resistance is calculated to be highest for the Au electrode while it is least for the Pt electrode.

Keywords

CNT Electronic structure Transmission properties Contact resistance 

References

  1. 1.
    McCarthy, M. A., Liu, B., Donoghue, E. P., Kravchenko, I., Kim, D. Y., So, F., et al. (2011). Science, 332(6029), 570–573.CrossRefGoogle Scholar
  2. 2.
    Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., et al. (2008). Nature Nanotechnology, 3, 423–428.CrossRefGoogle Scholar
  3. 3.
    Aliev, A. E., Oh, J., Kozlov, M. E., Kuznetsov, A. A., Fang, S., Fonseca, A. F., et al. (2009). Science, 323(5921), 1575–1578.CrossRefGoogle Scholar
  4. 4.
    Zhu, W. G., & Kaxiras, E. (2006). Nano Letters, 6, 1415.CrossRefGoogle Scholar
  5. 5.
    Dag, S., Gulseren, O., Ciraci, S., & Yildirim, T. (2003). Applied Physics Letters, 83, 3180.CrossRefGoogle Scholar
  6. 6.
    Park, N., & Hong. (2005). Physical Review B, 72, 045408.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Meng, T. Z., Wang, C.-Y., & Wang, S.-Y. (2007). Journal of Applied Physics, 102, 013709.CrossRefGoogle Scholar
  8. 8.
    Matsuda, Y., Deng, W.-Q., & Goddard, W. A. (2007). Journal of Physical Chemistry C, 111, 11113.CrossRefGoogle Scholar
  9. 9.
    Matsuda, Y., Deng, W.-Q., & Goddard, W. A. (2008). Journal of Physical Chemistry C, 112, 11042.CrossRefGoogle Scholar
  10. 10.
    Palacios, J. J., Perez-Jimenez, A. J., Louis, E., San Fabian, E., & Verges, J. A. (2003). Physical Review Letters, 90, 106801.CrossRefGoogle Scholar
  11. 11.
    Taylor, J., Guo, H., & Wang, J. (2001). Physical Review B, 63, 245407.CrossRefGoogle Scholar
  12. 12.
    Pomorski, P., Roland, C., & Guo, H. (2004). Physical Review B, 70, 115408.CrossRefGoogle Scholar
  13. 13.
    Gao, F., Qu, J., & Yao, M. (2010). Applied Physics Letters, 96, 102108.CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Datta, S. (2005). Quantum transport: atom to transistor. New York: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  16. 16.
    Pomorski, P., & Roland, C. (2004). Physical Review B, 70, 115408.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Rahul Prajesh
    • 1
  • Pankaj B. Agarwal
    • 1
  • Ajay Agarwal
    • 1
    Email author
  1. 1.CSIR-Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations