, Volume 2, Issue 4, pp 196–217 | Cite as

Biosensors as Novel Platforms for Detection of Food Pathogens and Allergens

  • Sandeep Kumar
  • Neeraj DilbaghiEmail author
  • Manju Barnela
  • Gaurav Bhanjana
  • Rajesh Kumar


Food safety involves preparation and storage of food in different ways to prevent food-borne illness. Ever increasing incidences of food-borne diseases have led food industry to employ rapid and inexpensive method of analysis. It is important not only for health, but also from economic point of view because food-borne diseases result in financial losses. Stringent laws have been made for preparation, packaging, and storage of food. Various techniques are used in food industry but biosensing has received considerable attention due to its high specificity and quick response at low cost. The present review describes use of biosensors for the detection of various pathogens, allergens, pesticide residues, natural contaminants, and other toxic substances in food. Different types of biosensors are used to serve the purpose of food quality assurance such as electrochemical, optical, piezoelectric, and thermometric. Various materials such as monoclonal antibodies, aptamers, RNA, and DNA have been used to enhance the sensitivity and specificity of biosensors for food. Employment of nanoparticles in fabrication of biosensors has shown remarkable potential because of their unique properties at small scale. A wide variety of nanomaterials such as carbon nanotubes, nanoparticles, nanowires, and quantum dots have been used for fabrication of biosensors. Attempts have been made to achieve real-time detection of food contaminants and a little success has been obtained in this regard because more or less, almost every technique requires sample preparation. Highly sensitive and selective biosensors have been developed which showed great potential to mark the presence of food contaminants close to real-time detection. Sensing strategies are moving towards the perfection to obtain real-time detection while assuring high quality of food which is free from any type of contamination.


Food safety Contamination of foods Biosensing strategies Food analysis 


  1. 1.
    Weetall, H. H. (1996). Biosensor technology—what? Where? When? And why? Biosens Bioelectronics, 11(1–2), R1–R4. doi: 10.1016/0956-5663(96)83729-8.Google Scholar
  2. 2.
    Pividori, I., & Alegret, S. (2010). Electrochemical biosensors for food safety. Contributions to science, 6(2), 173–191. doi: 10.2436/20.7010.01.95.Google Scholar
  3. 3.
    Arora, P., Sindhu, A., Dilbaghi, N., Chaudhury, A. (2011). Biosensors as innovative tools for the detection of food-borne pathogens. Biosensors and Bioelectronics, 28(1), 1–12. doi: 10.1016/j.bios.2011.06.002.Google Scholar
  4. 4.
    Importance of food quality. accessed on 04-06-2012.
  5. 5.
    Will M & Guenther D (2007) Food quality and safety standards 2nd edition practitioner’s reference book.Google Scholar
  6. 6.
    Roberts D (2003) Food poisoning In: Caballero B, Trugo L, Finglas P (eds) Encyclopedia of Food Sciences and Nutrition (2nd ed). New York: Academic Press, 5654–2658Google Scholar
  7. 7.
    Corrigenda on Food Safety and Standards Regulations, 2011 notified on 21st December, 2011(Dated: 30-12-2011) accessed on 04-06-2012
  8. 8.
  9. 9.
    The Food Quality Protection Act (FQPA) of (1996) US Pub. L. 104–170. accessed on 04-06-2012.
  10. 10.
    Scallan, E., Griffin, P. M., Angulo, F. J., Tauxe, R. V., Hoekstra, R. M. (2011). Food-borne illness acquired in the United States—unspecified agents. Emerging Infectious Diseases, 17(1), 16–22. doi: 10.3201/eid1701.P21101.Google Scholar
  11. 11.
    Wallace CA, Sperber WH, Mortimore SE (2010) Recognising food safety hazards in food safety for the 21st century: managing HACCP and food safety throughout the global supply chain. Oxford: Wiley-Blackwell. doi: 10.1002/9781444328653.ch5Google Scholar
  12. 12.
    The role of food safety in health and development. Report of a joint FAO/WHO expert committee on food safety. Geneva, World Health Organization, 1984 (WHO Technical Report Series, No 705).Google Scholar
  13. 13.
    The importance of food quality and safety for developing countries. accessed on 04-06-2012
  14. 14.
    Food technologies and public health. WHO/FNU/FOS/95.12 accessed on 04-06-2012.
  15. 15.
    Food-borne illness. accessed on 29-05-2012
  16. 16.
    Kaferstein, F. (2002). The role of food safety in child survival programmes. Bulletin of the World Health Organization, 80(9), 759–759. doi: 10.1590/S0042-96862002000900014.Google Scholar
  17. 17.
    Tietjen, M., & Fung, D. Y. C. (1995). Salmonella and food safety. Critique Review Microbiology, 21, 53–83. doi: 10.3109/10408419509113534.Google Scholar
  18. 18.
    Humphrey T & Stephens P (2003) Salmonella detection. In: Caballero B., Trugo L., Finglas P. (eds). Encyclopedia of food sciences and nutrition (2nd ed). New York: Academic Press, pp 5079–5084.Google Scholar
  19. 19.
    Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C. (2010). An overview of food-borne pathogen detection: in the perspective of biosensors. Biotechnology Advances, 28(2), 232–254. doi: 10.1016/j.biotechadv.2009.12.004.Google Scholar
  20. 20.
    Shen, H. G., Gould, S., Kinyon, J., Opriessnig, T., O’Connor, A. M. (2011). Development and evaluation of a multiplex real-time PCR assay for the detection and differentiation of Moraxella bovis, Moraxella bovoculi and Moraxella ovis in pure culture isolates and lacrimal swabs collected from conventionally raised cattle. Journal of Applied Microbiology, 111, 1037–1043. doi: 10.1111/j.1365-2672.2011.05123.x.Google Scholar
  21. 21.
    Chen, J., Tang, J., Liu, J., Cai, Z., Bai, X. (2012). Development and evaluation of a multiplex PCR for simultaneous detection of five food-borne pathogens. Journal of Applied Microbiology, 112, 823–830. doi: 10.1111/j.1365-2672.2012.05240.x.zbMATHGoogle Scholar
  22. 22.
    Bowtell, D. D. L. (1999). Options available—from start to finish for obtaining expression data by microarray. Nature General Supplement, 21, 25–32. doi: 10.1038/4455.Google Scholar
  23. 23.
    Sanders, G. H. W., & Manz, A. (2000). Chip-based microsystems for genomic and proteomic analysis. Trends in Analytical Chemistry, 19, 364–378. doi: 10.1016/S0165-9936(00)00011-X.Google Scholar
  24. 24.
    Wan, J., King, K., Craven, H., Mcauley, C., Tan, S. E., Coventry, M. J. (2000). Probelia™ PCR system for rapid detection of Salmonella in milk powder and ricotta cheese. Letters Applications Microbiology, 30, 267–271. doi: 10.1046/j.1472-765x.2000.00723.x.Google Scholar
  25. 25.
    Nawaz S (2003) Pesticides and herbicides. Residue determination. In: Caballero B, Trugo L, Finglas P (eds) Encyclopedia of food sciences and nutrition (2nd ed). New York: Academic Press, pp 4487–4493Google Scholar
  26. 26.
    Polan V, Soukup J, Vytras K (2010) Screen-printed carbon electrodes modified by rhodium dioxide and glucose dehydrogenase. SAGE-hindawi access to research enzyme research Volume 2010, Article ID 324184, 7 pages. doi: 10.4061/2010/324184
  27. 27.
    Corcuera J & Cavalieri R (2003) Biosensors. In: Encyclopedia of agricultural, food, and biological engineering. 119–123.Google Scholar
  28. 28.
    Terry, L. A., White, S. F., Tigwell, L. J. (2005). The application of biosensors to fresh produce and the wider food industry. Journal of Agricultural and Food Chemistry, 53, 1309–1316. doi: 10.1021/jf040319t.Google Scholar
  29. 29.
  30. 30.
    Narayanaswamy, R. (2006). Optical chemical sensors and biosensors for food safety and security applications. Acta Biologica Szegediensis, 50(3–4), 105–108.Google Scholar
  31. 31.
    Brockman, J. M., Nelson, B. P., Corn, R. M. (2000). Surface plasmon resonance imaging measurements of ultrathin organic films. Annual Review of Physical Chemistry, 51, 41–63. doi: 10.1146/annurev.physchem.51.1.41.Google Scholar
  32. 32.
    Soelberg, S. D., Chinowsky, T., Geiss, G., Spinelli, C. B., Stevens, R., Near, S., et al. (2005). A portable surface plasmon resonance sensor system for real-time monitoring of small to large analytes. Journal of Industrial Microbiology and Biotechnology, 32(11–12), 669–674. doi: 10.1007/s10295-005-0044-5.Google Scholar
  33. 33.
    Kretschmann, E., & Raether, H. (1968). Radiative decay of non-radiative surface plasmon excited by light. Naturforsh, 23A, 2135–2136.Google Scholar
  34. 34.
    Subramanian, A., Irudayaraj, J., Ryan, T. (2006). Mono and dithiol surfaces on surface plasmon resonance biosensors for detection of Staphylococcus aureus. Sensors and Actuators B: Chemical, 114(1), 192–198. doi: 10.1016/j.snb.2005.04.030.Google Scholar
  35. 35.
    Waswa, J., Irudayaraj, J., DebRoy, C. (2007). Direct detection of E. coli O157:H7 in selected food systems by a surface plasmon resonance biosensor. LWT—Food Particulate Science and Technology, 40(2), 187–192. doi: 10.1016/j.lwt.2005.11.001.Google Scholar
  36. 36.
    Koubova, V., Brynda, E., Karasova, L., Skvor, J., Homola, J., Dostalek, J., et al. (2001). Detection of food-borne pathogens using surface plasmon resonance biosensors. Sensors and Actuators B: Chemical, 74(1–3), 100–105. doi: 10.1016/S0925-4005(00)00717-6.Google Scholar
  37. 37.
    Jyoung, J.-Y., Hong, S., Lee, W., Choi, J.-W. (2006). Immunosensor for the detection of Vibrio cholerae O1 using surface plasmon resonance. Biosensors and Bioelectronics, 21(12), 2315–2319. doi: 10.1016/j.bios.2005.10.015.Google Scholar
  38. 38.
    Kang, C. D., Lee, S. W., Park, T. H., Sim, S. J. (2006). Performance enhancement of real-time detection of protozoan parasite, Cryptosporidium oocyst by a modified surface plasmon resonance (SPR) biosensor. Enzyme and Microbial Technology, 39(3), 387–390. doi: 10.1016/j.enzmictec.2005.11.039.Google Scholar
  39. 39.
    Leonard, P., Hearty, S., Quinn, J., O’Kennedy, R. (2004). A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosensors and Bioelectronics, 19(10), 1331–1335. doi: 10.1016/j.bios.2003.11.009.Google Scholar
  40. 40.
    Skottrup, P., Nicolaisen, M., Justesen, A. F. (2007). Rapid determination of Phytophthora infestans sporangia using a surface Plasmon resonance immunosensor. Journal of Microbiological Methods, 68(3), 507–515. doi: 10.1016/j.mimet.2006.10.011.Google Scholar
  41. 41.
    Boltovets, P. M., Snopok, B. A., Boyko, V. R., Shevchenko, T. P., Dyachenko, N. S., Shirshov, Y. M. (2004). Detection of plant viruses using a surface plasmon resonance via complexing with specific antibodies. Journal of Virological Methods, 121(1), 101–106. doi: 0.1016/j.jviromet.2004.06.019.Google Scholar
  42. 42.
    Gomara, M. J., Ercilla, G., Alsina, M. A., Haro, I. (2000). Assessment of synthetic peptides for hepatitis—a diagnosis using biosensor technology. Journal of Immunological Methods, 246(1–2), 13–24. doi: 10.1016/S0022-1759(00)00295-7.Google Scholar
  43. 43.
    Nedelkov, D., & Nelson, R. W. (2003). Detection of Staphylococcal enterotoxin B via biomolecular interaction analysis mass spectrometry. Applied and Environmental Microbiology, 69(9), 5212–5215. doi: 10.1128/AEM.69.9.5212-5215.2003.Google Scholar
  44. 44.
    Tsai, W.-C., & Li, I.-C. (2009). SPR-based immunosensor for determining staphylococcal enterotoxin A. Sensors and Actuators B: Chemical, 136(1), 8–12. doi: 10.1016/j.snb.2008.10.061.Google Scholar
  45. 45.
    Vaisocherova, H., Mrkvova, K., Piliarik, M., Jinoch, P., Steinbachova, M., Homola, J. (2007). Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus. Biosensors and Bioelectronics, 22(6), 1020–1026. doi: 10.1016/j.bios.2006.04.021.Google Scholar
  46. 46.
    Chung, J. W., Kim, S. D., Bernhardt, R., Pyun, J. C. (2005). Application of SPR biosensor for medical diagnostics of human hepatitis-B virus (hHBV). Sensors and Actuators B: Chemical, 111–112, 416–422. doi: 10.1016/j.snb.2005.03.055.Google Scholar
  47. 47.
    Scarano, S., Mascini, M., Turner, A. P., Minunni, M. (2010). Surface plasmon resonance imaging for affinity-based biosensors. Biosensors and Bioelectronics, 25(5), 957–966. doi: 10.1016/j.bios.2009.08.039.Google Scholar
  48. 48.
    Brockman, J. M., & Fernandez, S. M. (2001). Grating-coupled surface plasmon resonance for rapid, label-free, array-based sensing. American Laboratory, 33(12), 37–41.Google Scholar
  49. 49.
    Unfricht, D. W., Colpitts, S. L., Fernandez, S. M., Lynes, M. A. (2005). Grating-coupled surface plasmon resonance: a cell and protein microarray platform. Proteomics, 5(17), 4432–4442. doi: 10.1002/pmic.200401314.Google Scholar
  50. 50.
    Singh, B. K., & Hillier, A. C. (2006). Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array. Analytical Chemistry, 78(6), 2009–2018. doi: 10.1021/ac0519209.Google Scholar
  51. 51.
    Tamarin, O., Comeau, S., Dejous, C., Moynet, D., Rebiere, D., Bezian, J., et al. (2003). Real-time device for biosensing: design of a bacteriophage model using love acoustic waves. Biosensors and Bioelectronics, 18(5–6), 755–763. doi: 10.1016/S0956-5663(03)00022-8.Google Scholar
  52. 52.
    Uttenthaler, E., Schrcaml, M., Mandel, J., Drost, S. (2001). Ultrasensitive quartz crystal microbalance sensors for detection of M13-phages in liquids. Biosensors and Bioelectronics, 16(9–12), 735. doi: 10.1016/S0956-5663(01)00220-2.Google Scholar
  53. 53.
    Marusov, G., Sweatt, A., Pietrosimone, K., Benson, D., Geary, S. J., Silbart, L. K., et al. (2012). A microarray biosensor for multiplexed detection of microbes using grating-coupled surface plasmon resonance imaging. Environmental Science and Technology, 46(1), 348–359. doi: 10.1021/es201239f.Google Scholar
  54. 54.
    Murphy, M. B., Fuller, S. T., Richardson, P. M., Doyle, S. A. (2003). An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Research, 31, 110–118. doi: 10.1093/nar/gng110.Google Scholar
  55. 55.
    Pendergrast, P. S., Marsh, H. N., Grate, D., Healy, J. M., Stanton, M. (2005). Nucleic acid aptamers for target validation and therapeutic applications. Journal of Biomolecular Techniques, 16, 224–234.Google Scholar
  56. 56.
    Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505–510. doi: 10.1126/science.2200121.Google Scholar
  57. 57.
    Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818–822. doi: 10.1038/346818a0.Google Scholar
  58. 58.
    Cao, X., Li, S., Chen, L., Ding, H., Xu, H., Huang, Y., et al. (2009). Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Research, 37, 4621–4628. doi: 10.1093/nar/gkp489.Google Scholar
  59. 59.
    Hamula, C. L. A., Zhang, H., Guan, L. L., Li, X.-F., Le, X. C. (2008). Selection of aptamers against live bacterial cells. Analytical Chemistry, 80, 7812–7819. doi: 10.1021/ac801272s.Google Scholar
  60. 60.
    Vivekananda, J., & Kiel, J. L. (2006). Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by aptamer-linked immobilized sorbent assay. Laboratory Investigation, 86, 610–618. doi: 10.1038/labinvest.3700417.Google Scholar
  61. 61.
    Mairal, T., Ozalp, V. C., Lozano Sanchez, P., Mir, M., Katakis, I., O’Sullivan, C. K. (2008). Aptamers: molecular tools for analytical applications. Analytical and Bioanalytical Chemistry, 390, 989–1007. doi: 10.1007/s00216-007-1346-4.Google Scholar
  62. 62.
    Lee, J. F., Stovall, G. M., Ellington, A. D. (2006). Aptamer therapeutics advance. Current Opinion in Chemical Biology, 10, 282–289. doi: 10.1016/j.cbpa.2006.03.015.Google Scholar
  63. 63.
    Bunka, D. H., & Stockley, P. G. (2006). Aptamers come of age—at last. Nature Reviews Microbiology, 4, 588–596. doi: 10.1038/nrmicro1458.Google Scholar
  64. 64.
    Torres-Chavolla, E., & Alocilja, E. C. (2009). Aptasensors for detection of microbial and viral pathogens. Biosensors and Bioelectronics, 24, 3175–3182. doi: 10.1016/j.bios.2008.11.010.Google Scholar
  65. 65.
    Liss, M., Petersen, B., Wolf, H., Prohaska, E. (2002). An aptamer-based quartz crystal protein biosensor. Analytical Chemistry, 74, 4488–4495. doi: 10.1021/ac011294p.Google Scholar
  66. 66.
    Bruno, J. G., Phillips, T., Carillo, M. P., Crowell, R. (2009). Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. Journal of Fluorescence, 19, 427–435. doi: 10.1007/s10895-008-0429-8.Google Scholar
  67. 67.
    Karkkainen, R. M., Drasbek, M. R., McDowell, I., Smith, C. J., Young, N. W. G., Bonwick, G. A. (2011). Aptamers for safety and quality assurance in the food industry: detection of pathogens. International Journal of Food Science and Technology, 46(3), 445–454. doi: 10.1111/j.1365-2621.2010.02470.x.Google Scholar
  68. 68.
    Hamon, M., Bierne, H., Cossart, P. (2006). Listeria monocytogenes: a multifaceted model. Nature Reviews Microbiology, 4, 423–434. doi: 10.1038/nrmicro1413.Google Scholar
  69. 69.
    Bierne, H., Sabet, C., Personnic, N., Cossart, P. (2007). Internalins: a complex family of leucine-rich repeat containing proteins in Listeria monocytogenes. Microbes and Infection, 9, 1156–1166. doi: 10.1016/j.micinf.2007.05.003.Google Scholar
  70. 70.
    Ohk, S. H., Koo, O. K., Sen, T., Yamamoto, C. M., Bhunia, A. K. (2010). Antibody–aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. Journal of Applied Microbiology, 109(3), 808–817. doi: 10.1111/j.1365-2672.2010.04709.x.Google Scholar
  71. 71.
    Banada, P. P., & Bhunia, A. K. (2008). Antibodies and immunoassays for detection of bacterial pathogens. In M. Zourob, S. Elwary, & A. Turner (Eds.), Principles of bacterial detection: biosensors, recognition receptors and microsystems (pp. 567–602). Manchester: Cambridge University.Google Scholar
  72. 72.
    Lathrop, A. A., Banada, P. P., Bhunia, A. K. (2008). Differential expression of InlB and ActA in Listeria monocytogenes in selective and nonselective enrichment broths. Journal of Applied Microbiology, 104, 627–639. doi: 10.1111/j.1365-2672.2007.03574.x.Google Scholar
  73. 73.
    Geng, T., Morgan, M. T., Bhunia, A. K. (2004). Detection of low levels of Listeria monocytogenes cells by using a fiberoptic immunosensor. Applied and Environmental Microbiology, 70, 6138–6146. doi: 10.1128/AEM.70.10.6138-6146.2004.Google Scholar
  74. 74.
    Maeng, J.-S., Kim, N., Kim, Chong-Tai, H., Seung Ryul, L., Young Ju, L., et al. (2012). Rapid detection of food pathogens using RNA aptamers-immobilized slide. Journal of Nanoscience and Nanotechnology, 12(7), 5138–5142(5). doi: 10.1166/jnn.2012.6369.Google Scholar
  75. 75.
    Hallegraeff, G. M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32, 79–99. doi: 10.2216/i0031-8884-32-2-79.1.Google Scholar
  76. 76.
    Etheridge, S. M. (2010). Paralytic shellfish poisoning: seafood safety and human health perspectives. Toxicon, 56, 108–122. doi: 10.1016/j.toxicon.2009.12.013.Google Scholar
  77. 77.
    Cembella AD (1998) Physiological ecology of harmful algal blooms; NATO ASI Series, In: Anderson, D. M., Cembella, A. D., Hallegraeff, G. M., Eds.; Berlin: Springer, vol. G41:381–403Google Scholar
  78. 78.
    Landsberg, J. H. (2002). The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10(2), 113–390. doi: 10.1080/20026491051695.Google Scholar
  79. 79.
    Shumway, S. E. J. (1990). A review of the effects of algal blooms on shellfish and aquaculture. World Aquaculture Society, 21, 65–104. doi: 10.1111/j.1749-7345.1990.tb00529.x.Google Scholar
  80. 80.
    Shumway, S. E. (1995). Phycotoxin-related shellfish poisoning: bivalve molluscs are not the only vectors. Reviews in Fisheries Science, 3(1), 1–31. doi: 10.1080/10641269509388565.Google Scholar
  81. 81.
    Llewellyn, L. E. (2006). Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Natural Product Reports, 23, 200–222. doi: 10.1002/chin.200632280.Google Scholar
  82. 82.
    Vale, P. (2010). New saxitoxin analogues in the marine environment: developments in toxin chemistry, detection and biotransformation during the 2000s. Phytochemistry Reviews, 9(4), 525–535. doi: 10.1007/s11101-010-9196-7.Google Scholar
  83. 83.
    Sommer, H., & Meyer, K. F. (1937). Paralytic shellfish poisoning. AMA Archieves Pathology, 24, 560–570.Google Scholar
  84. 84.
    AOAC Official Method 959.08. (2005). Official methods of analysis of AOAC international, section 49.10.01 (18th ed.). Gaithersburg: AOAC International.Google Scholar
  85. 85.
    Vanden Top, H. J., Elliott, C. T., Haughey, S. A., Vilarinlfo, N., van Egmond, H. P., Botana, L. M., et al. (2011). Surface plasmon resonance biosensor screening method for paralytic shellfish poisoning toxins: a pilot inter-laboratory study. Analytical Chemistry, 83(11), 4206–4213. doi: 10.1021/ac2005235.Google Scholar
  86. 86.
    Huang, Y., Bell, M. C., Suni, I. I. (2008). Impedance biosensor for peanut protein Ara h 1. Analytical Chemistry, 80(23), 9157–9916. doi: 10.1021/ac801048g.Google Scholar
  87. 87.
    Sun, X., Yan, L., Tang, Y., Zhang, Y. (2012). A rapid and specific immunosensor for the detection of Aflatoxigenic Aspergilli. European Food Research and Technology, 234, 1013–1021. doi: 10.1007/s00217-012-1716-9.Google Scholar
  88. 88.
    Boka, B., Adanyi, N., Virag, D., Sebela, M., Kiss, A. (2011). Spoilage detection with biogenic amine biosensors, comparison of different enzyme electrodes. Electroanalysis, 24(1), 181–186. doi: 10.1002/elan.201100419.Google Scholar
  89. 89.
    Tombelli, S., & Mascini, M. (1998). Electrochemical biosensors for biogenic amines: a comparison between different approaches. Analytica Chimica Acta, 358(3), 277–284. doi: 10.1016/S0003-2670(97)00606-5.Google Scholar
  90. 90.
    Draisci, R., Volpe, G., Lucentini, L., Cecilia, A., Federico, R., Palleschi, G. (1998). Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies. Food Chemistry, 62(2), 225–232. doi: 10.1016/S0308-8146(97)00167-2.Google Scholar
  91. 91.
    Carelli, D., Centonze, D., Palermo, C., Quinto, M., Rotunno, T. (2007). An interference free amperometric biosensor for the detection of biogenic amines in food products. Biosensors and Bioelectronics, 23(5), 640–647. doi: 10.1016/j.bios.2007.07.008.Google Scholar
  92. 92.
    Keow, C. M., Bakar, F. A., Salleh, A. B., Heng, L. Y., Wagiran, R., Bean, L. S. (2007). An amperometric biosensor for the rapid assessment of histamine level in tiger prawn (Penaeus monodon) spoilage. Food Chemistry, 105, 1636–1641. doi: 10.1016/j.foodchem.2007.04.027.Google Scholar
  93. 93.
    Alonso-Lomillo, M. A., Domnguez-Renedo, O., Matos, P., Arcos-Martnez, M. J. (2010). Disposable biosensors for biogenic amines. Analytica Chimica Acta, 665(1), 26–31. doi: 10.1016/j.aca.2010.03.012.Google Scholar
  94. 94.
    Okuma, H., Okazaki, W., Usami, R., Horikoshi, K. (2000). Development of the enzyme reactor system with an amperometric detection and application to estimation of the incipient stage of spoilage of chicken. Analytica Chimica Acta, 411, 37–43. doi: 10.1016/S0003-2670(00)00739-X.Google Scholar
  95. 95.
    Shan, D., Li, Q., Xue, H., Cosnier, S. (2008). A highly reversible and sensitive tyrosinase inhibition-based amperometric biosensor for benzoic acid monitoring. Sensors and Actuators B: Chemical, 134, 1016–1021.Google Scholar
  96. 96.
    Topcu, S., Sezginturk, M. K., Dinckaya, E. (2004). Evaluation of a new biosensor-based mushroom (Agaricus bisporus) tissue homogenate: investigation of certain phenolic compounds and some inhibitor effects. Biosensors and Bioelectronics, 20(3), 592–597. doi: 10.1016/j.bios.2004.03.011.Google Scholar
  97. 97.
    Shan, D., Shi, Z. D., Xue, H. (2007). Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline-polyacrylonitrile composite matrix. Talanta, 72(5), 1767–1772. doi: 10.1016/j.talanta.2007.02.007.Google Scholar
  98. 98.
    Morales, M. D., Morante, S., Escarpa, A., Gonzalez, M. C., Reviejo, A. J., Pingarron, J. M. (2002). Design of a composite amperometric enzyme electrode for the control of the benzoic acid content in food. Talanta, 57, 1189–1198. doi: 10.1016/S0039-9140(02)00236-9.Google Scholar
  99. 99.
    Bohner, M. (2000). Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury, 31(4), D37–D47. doi: 10.1016/S0020-1383(00)80022-4.Google Scholar
  100. 100.
    Tortet, L., Gavarri, J. R., Nihoul, G., Dianoux, A. J. (1997). Protein mobilities in brushite and brushite/polymer composites. Solid State Ionics, 97(1–4), 253–256.Google Scholar
  101. 101.
    Lopez, M. S.-P., & Lopez-Ruiz, B. (2010). Inhibition biosensor based on calcium phosphate materials for detection of benzoic acid in aqueous and organic media. Electroanalysis, 23(1), 264–271. doi: 10.1002/elan.201000488.Google Scholar
  102. 102.
    Huang, Y. G., Ji, J. D., Hou, Q. N. (1996). A study on carcinogenesis of endogenous nitrite and nitrosamine, and prevention of cancer. Mutation Research, 358, 7–14. doi: 10.1016/0027-5107%2896%2900087-5.Google Scholar
  103. 103.
    Lijinsky, W., & Epstein, S. S. (1970). Nitrosamines as environmental carcinogens. Nature, 225, 21–23. doi: 10.1038/225021a0.Google Scholar
  104. 104.
    Chen, S. H., Yuan, R., Chai, Y. Q., Zhang, L. Y., Wang, N., Li, X. L. (2007). Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosensors and Bioelectronics, 22, 1268–1274. doi: 0.1016/j.bios.2006.05.022 DOI:10.1016/j.bios.2006.05.022.Google Scholar
  105. 105.
    Yang, R., Ruan, C. M., Dai, W. L., Deng, J. Q., Kong, J. L. (1999). Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly(thionine). Electrochimica Acta, 44, 1585–1596. doi: 10.1016/S0013-4686(98)00283-7.Google Scholar
  106. 106.
    Li, Q. W., Zhang, J., Yan, H., He, M. S., Liu, Z. F. (2004). Thionine-mediated chemistry of carbon nanotubes. Carbon, 42, 287–291. doi: 10.1016/j.carbon.2003.10.030.Google Scholar
  107. 107.
    Liu, H. Y., Wang, G. F., Chen, D. L., Zhang, W., Li, C. J., Fang, B. (2008). Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA. Sensors and Actuators B: Chemical, 128, 414–421. doi: 10.1016/j.snb.2007.06.028.Google Scholar
  108. 108.
    Shi, A. W., Qu, F. L., Yang, M. H., Shen, G. L., Yu, R. Q. (2008). Amperometric H2O2 biosensor based on poly-thionine nanowire/HRP/nano-Au modified glassy carbon electrode. Sensors and Actuators B: Chemical, 129, 779–783. doi: 10.1016/j.snb.2007.09.062.Google Scholar
  109. 109.
    Zhang, Y., Yuan, R., Chai, Y., Wang, J., Zhong, H. (2012). Amperometric biosensor for nitrite and hydrogen peroxide based on hemoglobin immobilized on gold nanoparticles/polythionine/platinum nanoparticles modified glassy carbon electrode. Journal of Chemical Technology and Biotechnology, 87(4), 570–574. doi: 10.1002/jctb.2753.Google Scholar
  110. 110.
    Viswanathan S (2011) Nanomaterials in soil and food analysis. Encyclopedia of agrophysics. Glinski, Jan; Horabik, Józef; Lipiec, Jerzy (Eds.) ISBN: 978-90-481-3586-8, Springer. doi:  10.1007/978-90-481-3585-1
  111. 111.
    Serra B, Reviejo AJ, Pingarron JM (2007) Application of electrochemical enzyme biosensors in food quality control, in electrochemical sensor analysis, (Eds: S. Alegret,A. MerkoÅi), Comprehensive analytical chemistry, 49: 255–298. doi:  10.1016/S0166-526X(06)49013-9
  112. 112.
    Agui, L., Eguilaz, M., Pena-Farfal, C., Yenez-Sedeno, P., Pingarron, J. M. (2009). Lactate dehydrogenase biosensor based on an hybrid carbon nanotube-conducting polymer modified electrode. Electroanalysis, 21(3–5), 386–391. doi: 10.1002/elan.200804404.Google Scholar
  113. 113.
    Evtugyn, G. A., Younusov, R. R., Ivanov, A. N., Sitdikov, R. R., Galuchin, A. V., Budnikov, H. C., et al. (2012). Cholinesterase biosensors based on screen-printed electrodes modified with Co-phtalocyanine and polycarboxylated thiacalixarenes. Electroanalysis, 24(3), 554–562. doi: 10.1002/elan.201100538.Google Scholar
  114. 114.
    Konstantinou, I. K., Sakellarides, T. M., Sakkas, V. A., Albanis, T. A. (2001). Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environmental Science and Technology, 35, 398–405. doi: 10.1021/es001271c.Google Scholar
  115. 115.
    Li, Q., & Shang, J. K. (2009). Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance. Environmental Science and Technology, 43(23), 8923–8929. doi: 10.1021/es902214s.Google Scholar
  116. 116.
    Matthews, R. W. J. (1984). Hydroxylation reactions induced by near ultraviolet photolysis of aqueous titanium dioxide suspensions. Chemical Society, Faraday Transactions, 1(80), 457–471. doi: 10.1039/F19848000457.Google Scholar
  117. 117.
    Matthews, R. W. J. (1987). Photooxidation of organic impurities in water using thin films of titanium oxide. Physics and Chemistry, 91, 3328–3333. doi: 10.1021/j100296a044.Google Scholar
  118. 118.
    Matthews RW, J. (1988). Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide. Catalysis, 111, 264–272. doi: 10.1016/0021-9517(88)90085-1.Google Scholar
  119. 119.
    Macak, J. M., Zlamal, M., Krysa, J., Schmuki, P. (2007). Self organised TiO2 nanotube layers as highly efficient photocatalyst. Small, 3, 300–304. doi: 10.1002/smll.200600426.Google Scholar
  120. 120.
    Rajeshwar, K., Osugi, M. E., Chanmanee, W., Chenthamarakshan, C. R., Zanoni, M. V. B., Kajitvichyanukul, P., et al. (2008). Photochemistry Photobiology C: Photochemistry Review, 9, 171–192.Google Scholar
  121. 121.
    Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigation: a review. Applied Catalysis B: Environment, 49, 1–14. doi: 10.1016/j.apcatb.2003.11.010.Google Scholar
  122. 122.
    Joo, J., Shim, J., Seo, H., Jung, N., Wiesner, U., Lee, J., et al. (2010). Enhanced photocatalytic activity of highly crystallized and ordered mesoporous titanium oxide measured by silicon resonators. Analytical Chemistry, 82, 3032–3037. doi: 10.1021/ac100119s.Google Scholar
  123. 123.
    Li, H., Li, J., Yang, Z., Xu, Q., Hu, X. (2011). A novel photoelectrochemical sensor for the organophosphorus pesticide dichlofenthion based on nanometer-sized titania coupled with a screen-printed electrode. Analytical Chemistry, 83(13), 5290–5295. doi: 10.1021/ac200706k.Google Scholar
  124. 124.
    Wang, X., Sun, X., Li, Q. (2011). AChE biosensor based on aniline-MWNTs modified electrode for the detection of pesticides. International Conference on Complex Medical Engineering, 441–444. doi: 10.1109/ICCME.2011.5876780.
  125. 125.
    Bakker, J., Gris, P., Coffernils, M., Kahn, R. J., Vincent, J.-L. (1996). Serial blood lactate levels can predict the development of multiple organ failure following septic shock. The American Journal of Surgery, 171(2), 221–226. doi: 10.1016/S0002-9610(97)89552-9.Google Scholar
  126. 126.
    Kost, G. J., Nguyen, T. H., Tang, Z. P. (2000). Whole-blood glucose and lactate—trilayer biosensors, drug interference, metabolism, practice guidelines. Archives of Pathology & Laboratory Medicine, 124, 1128–1134. doi: 10.1043/0003-9985(2000).Google Scholar
  127. 127.
    Artiss, J. D., Karcher, R. E., Cavanagh, K. T., Collins, S. L., Peterson, V. J., Varma, S., et al. (2000). A liquid-stable reagent for the determination of lactic acid: application to the Hitachi 911 and Beckman CX7. American Journal of Clinical Pathology, 114, 139–143.Google Scholar
  128. 128.
    Huang, J. D., Song, Z., Li, J., Yang, Y., Shi, H. B., Wu, B. Y., et al. (2007). Materials Science and Engineering C, Biomimetic Supramolecular System, 27, 29.Google Scholar
  129. 129.
    Avramescu, A., Andreescu, S., Noguer, T., Bala, C., Andreescu, D., Marty, J. L. (2002). Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations. Analytical and Bioanalytical Chemistry, 374, 25–32. doi: 10.1007/s00216-002-1312-0.Google Scholar
  130. 130.
    Ghamouss, F., Ledru, S., Ruille, N., Lantier, F., Boujtita, M. (2006). Bulk modified screen printing carbon electrodes with both lactate oxidase and horseredish peroxide for the determination of L-lactate in flow injection analysis mode. Analytica Chimica Acta, 570, 158–164. doi: 10.1016/j.aca.2006.04.022.Google Scholar
  131. 131.
    Nikolaus, N., & Strehlitz, B. (2008). Amperometric lactate biosensors and their application in (sports) medicine. Microchimica Acta, 160, 15–55. doi: 10.1007/s00604-007-0834-8.Google Scholar
  132. 132.
    Gilis, M., Durliat, H., Comtat, M. (1996). Electrochemical biosensors for assays of l-malic and d-lactic acids in wine. American Journal of Enology and Viticulture, 47(1), 11–16.Google Scholar
  133. 133.
    Mazzei, F., Botre, F., Favero, G. (2007). Peroxidase based biosensors for the selective determination of d,l-lactic acid and l-mallic acid in wines. Microchemical Journal, 87, 81–86. doi: 10.1016/j.microc.2007.05.009.Google Scholar
  134. 134.
    Dhand, C., Das, M., Datta, M., Malhotra, B. D. (2011). Recent advances in polyaniline based biosensors. Biosens Bioelectronics, 26, 2811–2821. doi: 10.1016/j.bios.2010.10.017.Google Scholar
  135. 135.
    Parra-Alfambra, A. M., Casero, E., Petit-Dominguez, M. D., Barbadillo, M., Pariente, F., Vazquez, L., et al. (2011). New nanostructured electrochemical biosensors based on three-dimensional (3-mercaptopropyl)-trimethoxysilane network. Analysis, 136, 340–347. doi: 10.1039/C0AN00475H.Google Scholar
  136. 136.
    Shkotova, L. V., Goriushkina, T. B., Tran-Minh, C., Chovelon, J. M., Soldatkin, A. P., Dzyadevych, S. V. (2008). Amperometric biosensor for lactate analysis in wine and must during fermentation. Materials Science and Engineering: C, 28, 943–948. doi: 10.1016/j.msec.2007.10.038.Google Scholar
  137. 137.
    Shakir, I., Shahid, M., Yang, H. W., Kang, D. J., Cherevko, S., Chung, C. (2012). α-MoO3 nanowire-based amperometric biosensor for L-lactate detection. Journal Solid State Electrochemistry, 16, 2197–2201. doi: 10.1007/s10008-012-1648-0.Google Scholar
  138. 138.
    Perez, S., Sanchez, S., Fabregas, E. (2012). Enzymatic strategies to construct L-lactate biosensors based on polysulfone/carbon nanotubes membranes. Electroanalysis, 24(4), 967–974. doi: 10.1002/elan.201100628.Google Scholar
  139. 139.
    Decludt, B., Bouvet, P., Mariani-Kurkdjian, P., Grimont, F., Grimont, P. A., Hubert, B., et al. (2000). Haemolytic uraemic syndrome and shiga toxin producing E. coli infection in children in France. Epidemiology and Infection, 124(2), 215–220.Google Scholar
  140. 140.
    Venkitanarayanan, K. S., & Doyle, M. P. (2003). E. coli: occurrence. Encyclopedia of food sciences and nutrition (pp. 2149–2152). New York: Academic Press.Google Scholar
  141. 141.
    Duzgun, A., Maroto, A., Mairal, T., O’Sullivan, C., Rius, F. X. (2010). Solid contact potentiometric aptasensor based on aptamer functionalized carbon nanotubes for the direct determination of proteins. The Analyst, 135, 1037–1041. doi: 10.1039/b926958d.Google Scholar
  142. 142.
    Zelada-Guillen, G. A., Riu, J., Duzgun, A., Rius, F. X. (2009). Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angewandte Chemie, International Edition, 48(40), 7334–7337. doi: 10.1002/anie.200902090.Google Scholar
  143. 143.
    So, H.-M., Park, D.-W., Jeon, E.-K., Kim, Y.-H., Kim, B. S., Lee, C.-K., et al. (2008). Detection and tilter estimation of E. coli using aptamer functionalized single walled carbon nanotube field effect transistor. Small, 4, 197–201. doi: 10.1002/smll.200700664.Google Scholar
  144. 144.
    Abu-Rabeah, K., Ashkenazi, A., Atias, D., Amir, L., Marks, R. S. (2009). A highly sensitive amperometric immunosensor for the detection of E. coli. Biosensors and Bioelectronics, 24(12), 3461–3466. doi: 10.1016/j.bios.2009.04.042.Google Scholar
  145. 145.
    Deisingh, A. K., & Thompson, M. J. (2004). Strategies for the detection of E. coli O157:H7 in foods. Applied Microbiology, 96, 419–429. doi: 10.1111/j.1365-2672.2003.02170.x.Google Scholar
  146. 146.
    Zelada-GuilleÌn, G. A., Bhosale, S. V., Riu, J., Rius, F. X. (2010). Real-time potentiometric detection of bacteria in complex samples. Analytical Chemistry, 82(22), 9254–9260. doi: 10.1021/ac101739b.Google Scholar
  147. 147.
    Sur, D., & Bhattacharya, S. K. (2006). Acute diarrhoeal diseases—an approach to management. Journal of the Indian Medical Association, 104, 220–223.Google Scholar
  148. 148.
    Luo, C., Lei, Y., Yan, L., Yu, T., Li, Q., Zhang, D., et al. (2012). A rapid and sensitive aptamer-based electrochemical biosensor for direct detection of Escherichia coli o111. Electroanalysis, 24(5), 1186–1191. doi: 10.1002/elan.20110070.Google Scholar
  149. 149.
    Koh, G., Agarwal, S., Cheow, P. S., Toh, C. S. (2007). Development of a membrane-based electrochemical immunosensor. Electrochimica Acta, 53(2), 803–810. doi: 10.1016/j.electacta.2007.07.055.Google Scholar
  150. 150.
    Nguyen, B. T. T., Koh, G., Lim, H. S., Chua, A. J. S., Ng, M. M. L., Toh, C. S. (2009). Membrane-based electrochemical nanobiosensor for the detection of virus. Analytical Chemistry, 81(17), 7226–7234. doi: 10.1021/ac900761a.Google Scholar
  151. 151.
    Matsushita, K., & Ameyama, M. (1982). D-glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods in Enzymology, 89, 149–154. doi: 10.1016/S0076-6879(82)89026-5.Google Scholar
  152. 152.
    Cheng, M. S., Lau, S. H., Chow, V. T., Toh, C.-S. (2011). Membrane-based electrochemical nanobiosensor for Escherichia coli detection and analysis of cells viability. Environmental Science and Technology, 45(15), 6453–6459. doi: 10.1021/es200884a.Google Scholar
  153. 153.
    Castillo, G., Lamberti, I., Mosiello, L., Hianik, T. (2012). Impedimetric DNA aptasensor for sensitive detection of Ochratoxin A in food. Electroanalysis, 24(3), 512–520. doi: 10.1002/elan.201100485.Google Scholar
  154. 154.
    Lee, J., Jo, M., Kim, T. H., Ahn, J. Y., Lee, D. K., Kim, S., et al. (2011). Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species. Lab on a Chip, 11(1), 52–56. doi: 10.1039/C0LC00259C.Google Scholar
  155. 155.
    Starodub, N. F., & Ogorodnijchuk, J. O. (2012). Immune biosensor based on the ISFETs for express determination of Salmonella typhimurium. Electroanalysis, 24(3), 600–606. doi: 10.1002/elan.201100539.Google Scholar
  156. 156.
    Gomez-Plaza, E., & Cano-Lopez, M. (2011). A review on microoxygenation of red wines: claims, benefits and the underlying chemistry. Food Chemistry, 125(4), 1131–1140. doi: 10.1016/j.foodchem.2010.10.034.Google Scholar
  157. 157.
    Xu, B., Ye, M., Yu, Y., Zhang, W. (2010). A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes. Analytica Chimica Acta, 674(1), 20–26. doi: 10.1016/j.aca.2010.06.004.Google Scholar
  158. 158.
    Zhang, B., Cui, Y., Chen, H., Liu, B., Chen, G., Tang, D. (2011). A new electrochemical biosensor for determination of hydrogen peroxide in food based on well-dispersive gold nanoparticles on graphene oxide. Electroanalysis, 23(8), 1821–1829. doi: 10.1002/elan.201100171.Google Scholar
  159. 159.
    Bolashikov, Z. D., & Melikov, A. K. (2009). Methods for air cleaning and protection of building occupants from airborne pathogens. Building and Environment, 44, 1378–1385. doi: 10.1016/j.buildenv.2008.09.001.Google Scholar
  160. 160.
    Gratacap-Cavallier, B., Genoulaz, O., Brengel-Pesce, K., Soule, H., Innicenti-Francillard, P., Bost, M., et al. (2000). Detection of human and animal rotavirus sequences in drinking water. Applied and Environmental Microbiology, 66, 2690–2692. doi: 10.1128/AEM.66.6.2690-2692.2000.Google Scholar
  161. 161.
    Teran, C. G., Teran-Escalera, C. N., Villarroel, P. (2009). Nitazoxanide vs. probiotics for the treatment of acute rotavirus diarrhea in children: a randomized, single-blind, controlled trial in Bolivian children. International Journal of Infectious Diseases, 13, 518–523. doi: 10.1016/j.ijid.2008.09.014.Google Scholar
  162. 162.
    Parashar, U. D., Hummelman, E. G., Bresee, J. S., Miller, M. A., Glass, R. I. (2003). Global illness and deaths caused by rotavirus disease in children. Emerging Infection Diseases, 9, 565–572. doi: DOI: 10.3201/eid0905.020562.Google Scholar
  163. 163.
    Patolsky, F., Timko, B. P., Zheng, G., Lieber, C. M. (2007). Nanowire-based nanoelectronic devices in the life sciences. MRS Bulletin, 32, 142–149. doi: 10.1557/mrs2007.47.Google Scholar
  164. 164.
    Angelopoulos, M. (2001). Conducting polymers in microelectronics. IBM Journal of Research and Development, 45, 57–75. doi: 10.1147/rd.451.0057.Google Scholar
  165. 165.
    Shirale, D. J., Bangar, M. A., Park, M., Yates, M. V., Chen, W., Myung, N. V., et al. (2010). Label-free chemiresistive immunosensors for viruses. Environmental Science and Technology, 44(23), 9030–9035. doi: 10.1021/es102129d.Google Scholar
  166. 166.
    Guschin, D. Y., Mobarry, B. K., Proudniko, D., Stahl, D. A., Rittmann, B. E., Mirzabekov, A. D. (1997). Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Applied and Environmental Microbiology, 63(6), 2397–2402.Google Scholar
  167. 167.
    Small, J., Call, D. R., Brockma, F. J., Straub, T. M., Chandler, D. P. (2001). Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarray. Applied and Environmental Microbiology, 67, 4708–4716. doi: 10.1128/AEM.67.10.4708-4716.2001.Google Scholar
  168. 168.
    Chandler, D. P., Newton, G. J., Small, J. A., Daly, D. S. (2003). A DNA microarray platform based on direct detection of r-RNA for characterization of freshwater segment-related prokaryotic communities. Applied and Environmental Microbiology, 69, 2950–2958. doi: 10.1128/AEM.69.5.2950-2958.2003.Google Scholar
  169. 169.
    Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., Stahl, D. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. A. Applied Environmental Microbiology, 56(6), 1919–1925. doi: 0099-2240/90/061919-07$02.00/0.Google Scholar
  170. 170.
    Hwang, B. H., & Cha, H. J. (2010). Pattern-mapped multiple detection of 11 pathogenic bacteria using a 16S rDNA-based oligonucleotide microarray. Biotechnol Bioengineering, 106(2), 183–192. doi: 10.1002/bit.22674.Google Scholar
  171. 171.
    Hwang, B. H., Shin, H. H., Seo, J. H., Cha, H. J. (2012). Specific multiplex analysis of pathogens using a direct 16S rRNA hybridization in microarray system. Analytical Chemistry, 84(11), 4873–4879. doi: 10.1021/ac300476k.Google Scholar
  172. 172.
  173. 173.
    Godber, B., Thompson, K. S. J., Rehak, M., Uludag, Y., Kelling, S., Sleptsov, A., et al. (2005). Direct quantification of analyte concentration by resonant acoustic profiling. Clinical Chemistry, 51(10), 1962–1972. doi: 10.1373/clinchem.2005.053249.Google Scholar
  174. 174.
    Thompson, M., & Hayward, G. L. (1997). Mass response of the thickness-shearmode acoustic wave sensor in liquids as a central misleading dogma. IEEE Intrnational Frequency Control Symposium, 114–119. doi: 10.1109/FREQ.1997.638529.
  175. 175.
    Natesan, M., Cooper, M. A., Tran, J. P., Rivera, V. R., Poli, M. A. (2009). Quantitative detection of Staphylococcal enterotoxin B by resonant acoustic profiling. Analytical Chemistry, 81(10), 3896–3902. doi: 10.1021/ac900086t.Google Scholar
  176. 176.
    Adam, R. D. (2001). Biology of Giardia lamblia. Clinical Microbiology Reviews, 14(3), 447–475. doi: 10.1128/CMR.14.3.447-475.2001.MathSciNetGoogle Scholar
  177. 177.
    Savioli, L., Smith, H., Thompson, A. (2006). Giardia and Cryptosporidium join the ‘neglected diseases initiative’. Trends in Parasitology, 22(5), 203–208. doi: 10.1016/ Scholar
  178. 178.
    Maraldo, D., Rijal, K., Campbell, G., Mutharasan, R. (2007). Method for label-free detection of femtogram quantities of biologics in flowing liquid samples. Analytical Chemistry, 79(7), 2762–2770. doi: 10.1021/ac0621726.Google Scholar
  179. 179.
    Xu, S., & Mutharasan, R. (2010). Rapid and sensitive detection of Giardia lamblia using a piezoelectric cantilever biosensor in finished and source waters. Environmental Science and Technology, 44(5), 1736–1741. doi: 10.1021/es9033843.Google Scholar
  180. 180.
    Haseley, S. R. (2002). Carbohydrate recognition: a nascent technology for the detection of bioanalytes. Analytica Chimica Acta, 457, 39–45. doi: 10.1016/S0003-2670(01)01329-0.Google Scholar
  181. 181.
    Ertl, P., & Mikkelsen, R. (2001). Electrochemical biosensor array for the identification of microorganisms based on lectin-lipopolysaccharide recognition. Analytical Chemistry, 73, 4241–4248. doi: 10.1021/ac010324l.Google Scholar
  182. 182.
    Serra, B., Gamella, M., Reviejo, A. J., Pingarrón, J. M. (2008). Lectin-modified piezoelectric biosensors for bacteria recognition and quantification. Analytical and Bioanalytical Chemistry, 391, 1853–1860. doi: 10.1007/s00216-008-2141-6.Google Scholar
  183. 183.
    Deisingh, A. K., & Thompson, M. (2002). Detection of toxigenic and infectious bacteria. The Analyst, 127, 567–581. doi: 10.1039/B109895K.Google Scholar
  184. 184.
    Su, X. L., & Li, Y. (2005). Surface plasmon resonance and quartz crystal microbalance immunosensors for detection of Escherichia coli O157:H7. Transaction of the ASAE, 48(1), 405–413.Google Scholar
  185. 185.
    Su, X. L., & Li, Y. (2005). A QCM immunosensor for Salmonella detection with simultaneous measurements of resonant frequency and modified resistance. Biosensors and Bioelectronics, 21, 840–848. doi: 10.1016/j.bios.2005.01.021.MathSciNetGoogle Scholar
  186. 186.
    Xie, Q., Zhang, Y., Xiang, C., Tang, J., Li, Y., Zaho, Q., et al. (2001). A comparative study on the viscoelasticity and morphology of polyaniline films galvanostatically grown on bare and 4-aminothiophenol-modified gold electrodes using an electrochemical quartz crystal impedance system and SEM. Analytical Sciences, 17(5), 613–620. doi: 10.2116/analsci.17.613.Google Scholar
  187. 187.
    Zhou, T., Marx, K. A., Warren, M., Schulze, H., Braunhut, S. J. (2000). The quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth. Biotechnology Progress, 16(2), 268–277. doi: 10.1021/bp000003f.Google Scholar
  188. 188.
    Liu, F., Li, Y., Su, X., Slavik, M. F., Ying, Y., Wang, J. (2007). QCM immunosensor with nanoparticle amplification for detection of Escherichia coli O157:H7. Sensing and Instrument Food Quality, 1, 161–168. doi: 10.1007/s11694-007-9021-1.Google Scholar
  189. 189.
    Wu, V. C. H., Chen, S. H., Lin, C. S. (2007). Real-time detection of Escherichia coli O157:H7 sequences using a circulating-flow system of quartz crystal microbalance. Biosensors and Bioelectronics, 22, 2967–2975. doi: 10.1016/j.bios.2006.12.016.Google Scholar
  190. 190.
    Mao, X., Yang, L., Su, X. L., Li, Y. (2006). A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of E. coli O157:H7. Biosensors and Bioelectronics, 21, 1178–1185. doi: 10.1016/j.bios.2005.04.021.Google Scholar
  191. 191.
    Jiang, W. L., Shan, W. Q., Sheng, W. C., Ying, H. Z., Jian, J. I., Ping, W. (2008). The Escherichia coli O157:H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor. Chinese Science Bulletin, 53(8), 1175–1184. doi: 10.1007/s11434-007-0529-x.Google Scholar
  192. 192.
    Mayer, Z., Farber, P., Geisen, R. (2003). Monitoring the production of aflatoxin B1 in wheat by measuring the concentration of nor-1 mRNA. Applied and Environmental Microbiology, 69, 1154–1158. doi: 10.1128/AEM.69.2.1154-1158.2003.Google Scholar
  193. 193.
    Degola, F., Berni, E., Dall’Asta, C., Spotti, E., Marchelli, R., Ferrero, I., et al. (2007). A multiplex RT-PCR approach to detect aflatoxigenic strains of Aspergillus flavus. Journal of Applied Microbiology, 103(2), 409–417. doi: 10.1111/j.1365-2672.2006.03256.x.Google Scholar
  194. 194.
    IARC. (2002). Some traditional herbal medicines, some nycotoxins, naphthalene and styrene, vol. 82. Lyon: International Agency for Research on Cancer.Google Scholar
  195. 195.
    Adams M & Motarjemi Y (1999) World Health Organisation WHO/SDE/PHE/FOS/99.1Google Scholar
  196. 196.
    Kumar, V., Basu, M. S., Rajendran, T. P. (2008). Mycotoxin research and mycoflora in some commercially important agricultural commodities. Crop Protection, 27, 891–905. doi: 10.1016/j.cropro.2007.12.011.Google Scholar
  197. 197.
    Tombelli, S., Mascini, M., Scherm, B., Battacone, G., Migheli, Q. (2009). DNA biosensors for the detection of aflatoxin producing Aspergillus flavus and A. parasiticus. Monatsh Chemistry, 40, 901–907. doi: 10.1007/s00706-009-0137-3.Google Scholar
  198. 198.
    Palosuo, K., Alenius, H., Varjonen, E., Koivuluhta, M., Mikkola, J., Keskinen, H., et al. (1999). A novel wheat gliadin as a cause of exercise-induced anaphylaxis. The Journal of Allergy and Clinical Immunology, 103, 912–917. doi: 10.1016/S0091-6749(99)70438-0.Google Scholar
  199. 199.
    Sollid, L. M. (2002). Coeliac disease: dissecting a complex inflammatory disorder. Nature Reviews Immunology, 2, 647–655. doi: 10.1038/nri885.Google Scholar
  200. 200.
    Thompson, T., & Méndez, E. (2008). Commercial assays to assess gluten content of gluten-free foods: why they are not created equal. Journal of the American Dietetic Association, 108, 1682–1687. doi: 10.1016/j.jada.2008.07.012.Google Scholar
  201. 201.
    Chu, P.-T., Lin, C.-S., Chen, W.-J., Chen, C.-F., Wen, H.-W. (2012). Detection of gliadin in foods using a quartz crystal microbalance biosensor that incorporates gold nanoparticles. Journal of Agricultural and Food Chemistry. doi: 10.1021/jf2047866.
  202. 202.
    Tkac, J., Sturdik, E., Gemeiner, P. (2000). Novel glucose non-interference biosensor for lactose detection based on galactose oxidase-peroxidase with and without co-immobilised N-galactosidase. The Analyst, 125, 1285–1289. doi: 10.1039/B001432J.Google Scholar
  203. 203.
    Ludwig, R., Harreither, W., Tasca, F., Gorton, L. (2010). Cellobiose dehydrogenase: a versatile catalyst for electrochemical applications. Chemisrty Physical Chemistry, 11, 2674–2697. doi: 10.1002/cphc.201000216.Google Scholar
  204. 204.
    Stoica, L., Dimcheva, N., Haltrich, D., Ruzgas, T., Gorton, L. (2005). Electrochemical investigation of cellobiose dehydrogenase from new fungal sources on Au electrode. Biosensors and Bioelectronics, 20, 2010–2018. doi: 10.1016/j.bios.2004.09.018.Google Scholar
  205. 205.
    Ramanathan, K., & Danielsson, B. (2001). Principles and applications of thermal biosensors. Biosensors and Bioelectronics, 16, 417–423. doi: 0.1016/S0956-5663(01)00124-5.Google Scholar
  206. 206.
    Appelqvist, R., Marko-Varga, G., Gorton, L., Torstensson, A., Johansson, G. (1985). Enzymatic determination of glucose in a flow system by catalytic oxidation of the nicotinamide coenzyme at a modified electrode. Analytica Chimica Acta, 169, 237–247. doi: 10.1016/S0003-2670(00)86226-1.Google Scholar
  207. 207.
    Xie, B., Khayyami, M., Nwosu, T., Larsson, P. O., Danielsson, B. (1993). Ferrocene-mediated thermal biosensor. The Analyst, 118, 845–848. doi: 10.1039/AN9931800845.Google Scholar
  208. 208.
    Xie, B., Tang, X., Wollenberger, U., Johansson, G., Gorton, L., Scheller, F., et al. (1997). Hybrid biosensor for simultaneous electrochemical and thermal detection. Analytical Letters, 30(12), 2141–2158. doi: 10.1080/00032719708001729.Google Scholar
  209. 209.
    Yakovlevaa, M., Buzasa, O., Matsumuraa, H., Samejimab, M., Igarashib, K., Larssonc, P.-O., et al. (2012). A novel combined thermometric and amperometric biosensor for lactose determination based on immobilised cellobiose dehydrogenase. Biosensors and Bioelectronics, 31, 251–256. doi: 10.1016/j.bios.2011.10.027.Google Scholar
  210. 210.
    Martinez, A. W., Phillips, S. T., Butte, M. J., Whitesides, G. M. (2007). Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie, International Edition, 46(8), 1318–1320. doi: 10.1002/anie.200603817.Google Scholar
  211. 211.
    Martinez, A. W., Phillips, S. T., Whitesides, G. M., Carrilho, E. (2010). Diagnostics for the developing world: microfluidic paper-based analytical devices. Analytical Chemistry, 82(1), 3–10. doi: 10.1021/ac9013989.Google Scholar
  212. 212.
    Orenga, S., James, A. L., Manafi, M., Perry, J. D., Pincus, D. H. (2009). Enzymatic substrates in microbiology. Journal of Microbiological Methods, 79(2), 139–155. doi: 10.1016/j.mimet.2009.08.001.Google Scholar
  213. 213.
    Jokerst, J. C., Adkins, J. A., Bisha, B., Mentele, M. M., Goodridge, L. D., Henry, C. S. (2012). Development of a paper-based analytical device for colorimetric detection of select food-borne pathogens. Analytical Chemistry, 84(6), 2900–2907. doi: 10.1021/ac203466y.Google Scholar
  214. 214.
    Kennedy, R. O., Byrne, B., Stack, E., Gilmartin, N. (2009). Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors, 9, 4407–4445. doi: 10.3390/s90604407.Google Scholar
  215. 215.
    Suo, Z., Yang, X., Deliorman, M., Cao, L., Avci, R. (2012). Capture efficiency of E. coli in fimbriae-mediated immunoimmobilization. Langmuir, 28(2), 1351–1359. doi: 10.1021/la203348j.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sandeep Kumar
    • 1
  • Neeraj Dilbaghi
    • 1
    Email author
  • Manju Barnela
    • 1
  • Gaurav Bhanjana
    • 1
  • Rajesh Kumar
    • 2
  1. 1.Department of Bio and Nano TechnologyGuru Jambheshwar University of Science and TechnologyHisarIndia
  2. 2.Department of Mechanical Engineering, University Institute of Engineering and TechnologyPanjab UniversityChandigarhIndia

Personalised recommendations