, Volume 2, Issue 4, pp 185–195 | Cite as

Multiwalled Carbon Nanotubes for Amperometric Array-Based Biosensors

  • Irene TaurinoEmail author
  • Giovanni De Micheli
  • Sandro Carrara


For diagnostic and therapeutic purposes an accurate determination of multiple metabolites is often required. Amperometric devices are attractive tools to quantify biological compounds due to the direct conversion of a biochemical event to a current. This review addresses recent developments in the use of multiwalled carbon nanotubes to enhance detection capability of amperometric array-based biosensors. More specifically, the principal techniques for multiwalled carbon nanotube incorporation onto microelectrode arrays are described. In these types of devices, each electrode is responsible for sensing one metabolite. The specificity is often given by an enzyme since most biomolecules are not electroactive compounds. Common strategies for the protein immobilization onto multiwalled carbon nanotubes are also presented. After the discussion of nanotube/biomolecule integration onto electrode surfaces, three results are shown. The first one regards the influence on the biodetection signal of differently oriented multiwalled carbon nanotubes. Secondly, a demonstration of enhanced biodetection parameters by using multiwalled carbon nanotubes is given. Finally, a comparative study of three enzymes used to detect the same metabolite and adsorbed onto multiwalled carbon nanotubes is also reported.


Multiwalled carbon nanotubes Metabolite detection Amperometric array-based biosensors Enzyme immobilization Nanostructure integration 



The authors would like to thank Alberto Tagliaferro e Mauro Giorcelli for the MWCNTs fabrications and Linda Thöny-Meyer for providing NLox and wtLox. The research is supported by the i-IronIC project. The i-IronIC project is financed with a grant from the Swiss initiative and evaluated by the Swiss National Science Foundation.


  1. 1.
    Pejcic, B., De Marco, R., Parkinson, G. (2006) The role of biosensors in the detection of emerging infectious diseases. Analyst, 131(10), 1079–1090.CrossRefGoogle Scholar
  2. 2.
    Lojou, A., & Bianco, P. (2006) Application of the electrochemical concepts and techniques to amperometric biosensor devices. Journal of Electroceramics, 16, 79–91.CrossRefGoogle Scholar
  3. 3.
    Ronkainen, N.J., Halsall, H.B., Heineman, W.R. (2010) Electrochemical biosensors. Chemical Society reviews, 39(5), 1747–1763.CrossRefGoogle Scholar
  4. 4.
    Wang, J. (2001) Glucose biosensors: 40 years of advances and challenges. Electroanalysis, 13(12), 983.CrossRefGoogle Scholar
  5. 5.
    Spranger, M., Krempien, S., Schwab, S., Maiwald, M., Bruno, K., Hacke, W. (1996) Excess glutamate in the cerebrospinal fluid in bacterial meningitis. Journal of the Neurological Sciences, 143(12), 126–131.CrossRefGoogle Scholar
  6. 6.
    Carrara, S., Ghoreishizadeh, S.S., Olivo, J., Taurino, I., Baj-Rossi, C., Cavallini, A., de Beeck, M.O., Dehollain, C., Burleson, W., Moussy, F.G., Guiseppi-Elie, A., De Micheli, G. (2012) Fully integrated biochip platforms for advanced healthcare. Sensors, Accepted Manustript.Google Scholar
  7. 7.
    Ferrari, M. (2005) Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer, 5(3), 161–171.CrossRefGoogle Scholar
  8. 8.
    Valentini, F., Amine, A., Orlanducci, S., Terranova, M.L., Palleschi, G. (2003) Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Analytical chemistry, 75(20), 5413–5421.CrossRefGoogle Scholar
  9. 9.
    Liu, J., Chou, A., Rahmat, W., Paddon-Row, M.N., Gooding, J.J. (2005) Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis, 17(1), 38–46.CrossRefGoogle Scholar
  10. 10.
    Joseph, S., Rusling, J.F., Lvov, Y.M., Friedberg, T., Fuhr, Y.M. (2003) An amperometric biosensor with human CYP3A4 as a novel drug screening tool. Biochemical pharmacology, 65(11), 1817–1826.CrossRefGoogle Scholar
  11. 11.
    Carrara, S., Cavallini, A., Erokhin, V., De Micheli, G. (2011) Multi-panel drugs detection in human serum for personalized therapy. Biosensors and Bioelectronics, 26(9), 3914–3919.CrossRefGoogle Scholar
  12. 12.
    Katz, E., & Willner, I. (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. ChemPhysChem, 5(8), 1084–1104.CrossRefGoogle Scholar
  13. 13.
    Gong, K., Yan, Y., Zhang, M., Su, L., Xiong, S., Mao, L. (2005) Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Analytical sciences, 21(12), 1383–1393.CrossRefGoogle Scholar
  14. 14.
    Ajayan, P.M. (1999) Nanotubes from carbon. Chemical Reviews, 99(7), 1787–1800.CrossRefGoogle Scholar
  15. 15.
    Hu, C., & Hu, S. (2009) Carbon nanotube-based electrochemical sensors: principles and applications in biomedical systems. Journal of Sensors doi:10.1155/2009/187615 .Google Scholar
  16. 16.
    Lai, K.W.C., Fung, C.K.M., Wong, V.T.S., Sin, M.L.Y., Li, W.J., Kwong, C.P. (2006) Development of an automated microspotting system for rapid dielectrophoretic fabrication of bundled carbon nanotube sensors. IEEE Transactions on Automation Science and Engineering, 3(3), 218–227.CrossRefGoogle Scholar
  17. 17.
    Boero, C., Carrara, S., De Micheli, G. (2011) New technologies for nanobiosensing and their applications to real-time monitoring. In Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE, (pp. 357–360).Google Scholar
  18. 18.
    Hojati-Talemi, P., Simon, G.P. (2010) Electropolymerization of polypyrrole/carbon nanotube nanocomposite films over an electrically nonconductive membrane. The Journal of Physical Chemistry C 14 (33), 13962–13966.CrossRefGoogle Scholar
  19. 19.
    Wang, Z., Yuan, J., Li, M., Han, D., Zhang, Y., Shen, Y., Niu, L., Ivaska, A. (2007) Electropolymerization and catalysis of well-dispersed polyaniline/carbon nanotube/gold composite. Journal of Electroanalytical Chemistry, 599(1), 121–126.CrossRefGoogle Scholar
  20. 20.
    Wang, J., & Musameh, M. (2005) Carbon-nanotubes doped polypyrrole glucose biosensor. Analytica Chimica Acta, 539(1), 209–213.CrossRefGoogle Scholar
  21. 21.
    Vidal, J.C., Garcia, E., Castillo, J.R. (1998) Electropolymerization of pyrrole and immobilization of glucose oxidase in a flow system: influence of the operating conditions on analytical performance. Biosensors and Bioelectronics, 13(3), 371–382.CrossRefGoogle Scholar
  22. 22.
    Yu, X., Chattopadhyay, D., Galeska, I., Papadimitrakopoulos, F., Rusling, J.F. (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochemistry Communications, 5(5), 408–411.CrossRefGoogle Scholar
  23. 23.
    Minati, L., Speranza, G., Torrengo, S., Toniutti, L., Migliaresi, C., Maniglio, D., Ferrari, M., Chiasera, A. (2010) Characterization of thiol-functionalized carbon nanotubes on gold surfaces. Surface Science, 604(17–18), 1414–1419.CrossRefGoogle Scholar
  24. 24.
    Julio, C., Gardona, Z., Cao, R., Suarez, M. (2012) Vertical self-assembly of modified multiwalled carbon nanotubes on gold surfaces induced by chitosan and tween. Chemical Communications, 48, 1910–1912.CrossRefGoogle Scholar
  25. 25.
    Juan, X.J., Gang, W., Zhang, X.H.X.I.A.Q., Hong Yuan, C. (2005) 3rd generation horseradish peroxidase biosensor based on self-assembling carbon nanotubes to gold electrode surface. Chinese Chemical Letters, 16(4), 523–526.Google Scholar
  26. 26.
    Kim, H.R., Park, S., Jung, C., Kim, J., Rhee, C.K., Hyun, M.S. (2010) Selective adsorption of dithiolate-modified multi-wall carbon nanotubes onto alkanethiol self-assembled monolayers on Au (111). Chemical Communications, 46(35), 6584–6586.CrossRefGoogle Scholar
  27. 27.
    Cassell, A.M., Raymakers, J.A., Kong, J., Dai, H. (1999) Large scale CVD synthesis of single-walled carbon nanotubes. The Journal of Physical Chemistry B, 103(31), 6484–6492.CrossRefGoogle Scholar
  28. 28.
    Zanganeh, S., Torabi, M., Kajbafvala, A., Zanganeh, N., Bayati, M.R., Molaei, R., Zargar, H.R., Sadrnezhaad, S.K. (2010) CVD fabrication of carbon nanotubes on electrodeposited flower-like fe nanostructures. Journal of Alloys and Compounds, 507(2), 494–497.CrossRefGoogle Scholar
  29. 29.
    Nessim, G.D., Acquaviva, D., Seita, M., O’Brien, K.P., Thompson, C.V. (2010) The critical role of the underlayer material and thickness in growing vertically aligned carbon nanotubes and nanofibers on metallic substrates by chemical vapor deposition. Advanced Functional Materials, 20(8), 1306–1312.CrossRefGoogle Scholar
  30. 30.
    Bayer, B.C., Hofmann, S., Castellarin-Cudia, C., Blume, R., Baehtz, C., Esconjauregui, S., Wirth, C.T., Oliver, R.A., Ducati, C., Knop-Gericke, A., et al. (2011) Support–catalyst–gas interactions during carbon nanotube growth on metallic ta films. The Journal of Physical Chemistry C 115 (11), 4359–4369.CrossRefGoogle Scholar
  31. 31.
    Martin-Fernandez, I., Gabriel, G., Rius, G., Villa, R., Perez-Murano, F., Lora-Tamayo, E., Godignon, P. (2009) Vertically aligned multi-walled carbon nanotube growth on platinum electrodes for bio-impedance applications. Microelectronic Engineering, 86(4–6), 806–808.CrossRefGoogle Scholar
  32. 32.
    Talapatra, S., Kar, S., Pal, K.S., Vajtai, R., Ci, L., Victor, P., Shaijumon, M.M., Kaur, S., Nalamasu, O., Ajayan, M.P. (2006) Direct growth of aligned carbon nanotubes on bulk metals. Nat Nano, 1(2), 112–116.CrossRefGoogle Scholar
  33. 33.
    Mendoza, E., Henley, S.J., Poa, C.H.P., Chen, G.Y., Giusca, C.E., Adikaari, A.A.D.T., Carey, J.D., Silva, S.R.P. (2005) Large area growth of carbon nanotube arrays for sensing platforms. Sensors and Actuators B: Chemical, 109, 75–80.CrossRefGoogle Scholar
  34. 34.
    Matthews, K.D., Lemaitre, M.G., Kim, T., Chen, H., Shim, M., Zuo, J.M. (2006) Growth modes of carbon nanotubes on metal substrates. Journal of Applied Physics, 100, 044309.CrossRefGoogle Scholar
  35. 35.
    Chen, G.Y., Jensen, B., Stolojan, V., Silva, S.R.P. (2011) Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies. Carbon, 49(1), 280–285.CrossRefGoogle Scholar
  36. 36.
    Lin, Y., Lu, F., Tu, Y., Ren, Z. (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters, 4(2), 191–195.CrossRefGoogle Scholar
  37. 37.
    Tominaga, M., Nomura, S., Taniguchi, I. (2009) D-fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode. Biosensors and Bioelectronics, 24(5), 1184–1188.CrossRefGoogle Scholar
  38. 38.
    Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R. (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.CrossRefGoogle Scholar
  39. 39.
    Ji, P., Tan, H., Xu, X., Feng, W. (2010) Lipase covalently attached to multiwalled carbon nanotubes as an efficient catalyst in organic solvent. AIChE Journal, 56(11), 3005–3011.CrossRefGoogle Scholar
  40. 40.
    Kim, B.J., Kang, B.K., Bahk, Y.Y., Yoo, K.H., Lim, K.J. (2009) Immobilization of horseradish peroxidase on multi-walled carbon nanotubes and its enzymatic stability. Current Applied Physics, 9(4), e263–e265.CrossRefGoogle Scholar
  41. 41.
    Cang-Rong, J.T., & Pastorin, G. (2009) The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Nanotechnology, 20, 255102.CrossRefGoogle Scholar
  42. 42.
    Baj-Rossi, C., De Micheli, G., Carrara, S. (2012) Electrochemical detection of anti-breast-cancer agents in human serum by cytochrome p450-coated carbon nanotubes. Sensors, 12(5), 6520–6537.CrossRefGoogle Scholar
  43. 43.
    Feng, W., & Ji, P. (2011) Enzymes immobilized on carbon nanotubes. Biotechnology Advances 29, (6), 889–895.CrossRefGoogle Scholar
  44. 44.
    Lee, K.P., Komathi, S., Nam, N.J., Gopalan, A.I. (2010) Sulfonated polyaniline network grafted multi-wall carbon nanotubes for enzyme immobilization, direct electrochemistry and biosensing of glucose. Microchemical Journal, 95(1), 74–79.CrossRefGoogle Scholar
  45. 45.
    Huang, J., Song, Z., Li, J., Yang, Y., Shi, H., Wu, B., Anzai, J., Osa, T., Chen, Q. (2007) A highly-sensitive L-lactate biosensor based on sol-gel film combined with multi-walled carbon nanotubes (MWCNTs) modified electrode. Materials Science and Engineering: C, 27(1), 29–34.CrossRefGoogle Scholar
  46. 46.
    Taurino, I., Carrara, S., Giorcelli, M., Tagliaferro, A., De Micheli, G. (2011) Comparing the enhanced sensing interfaces of differently oriented carbon nanotubes onto silicon for bio-chip applications. In 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), 2011, (pp. 90–93).Google Scholar
  47. 47.
    Taurino, I., Carrara, S., Giorcelli, M., Tagliaferro, A., De Micheli, G. (2012) Carbon nanotubes with different orientations for electrochemical biodevices. IEEE Sensors Journal, (99), 1Google Scholar
  48. 48.
    Banks, C.E., Davies, T.J., Wildgoose, G.G., Compton, R.G. (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. ChemInform, 36(18), 829–841.CrossRefGoogle Scholar
  49. 49.
    Gong, K., Chakrabarti, S., Dai, L. (2008) Electrochemistry at carbon nanotube electrodes: is the nanotube tip more active than the sidewall? Angewandte Chemie International Edition, 47(29), 5446–5450.CrossRefGoogle Scholar
  50. 50.
    Taurino, I., Carrara, S., Giorcelli, M., Tagliaferro, A., De Micheli, G. (2011) Comparing sensitivities of differently oriented multi-walled carbon nanotubes integrated on silicon wafer for electrochemical biosensors. Sensors and Actuators B: Chemical B 160, 327–333.CrossRefGoogle Scholar
  51. 51.
    Shoham, B., Migron, Y., Riklin, A., Willner, I., Tartakovsky, B. (1995) A bilirubin biosensor based on a multilayer network enzyme electrode. Biosensors and Bioelectronics, 10(3–4), 341–352.CrossRefGoogle Scholar
  52. 52.
    Zhang, M., Mullens, C., Gorski, W. (2005) Insulin oxidation and determination at carbon electrodes. Analytical chemistry, 77(19), 6396–6401.CrossRefGoogle Scholar
  53. 53.
    Salimi, A., Mohamadi, L., Hallaj, R., Soltanian, S. (2009) Electrooxidation of insulin at silicon carbide nanoparticles modified glassy carbon electrode. Electrochemistry Communications, 11(6), 1116–1119.CrossRefGoogle Scholar
  54. 54.
    Sherlock, S., & Dooley, J. (1993) Diseases of the liver and biliary system. Wiley Online Library.Google Scholar
  55. 55.
    Ye, J., Xiong, H., Wang, Q., Zhang, X., Wang, S. (2011) Voltammetric behavior of bilirubin based on [bmim][PF6] as the supporting electrolyte in organic solvent and its analytical application. Am. J. Biomed. Sci, 3(3), 191–198.CrossRefGoogle Scholar
  56. 56.
    Wang, L., Wei, L., Chen, Y., Jiang, R. (2010) Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. Journal of Biotechnology, 150(1), 57–63.CrossRefGoogle Scholar
  57. 57.
    Campàs, M., Prieto-Simón, B., Marty, J.L. (2009) A review of the use of genetically engineered enzymes in electrochemical biosensors. Seminars in cell & developmental biology, 20, 3–9.CrossRefGoogle Scholar
  58. 58.
    Taurino, I., Reiss, R., Richter, M., Fairhead, M., Thöny-Meyer, L., De Micheli, G., Carrara, S. (2012) Comparative study of three lactate oxidases from Aerococcus viridans for biosensing applications. In preparation.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Irene Taurino
    • 1
    Email author
  • Giovanni De Micheli
    • 1
  • Sandro Carrara
    • 1
  1. 1.Laboratory of Integrated SystemsEPFL - École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations