Advertisement

BioNanoScience

, Volume 2, Issue 4, pp 287–304 | Cite as

Chemically Modified Micro- and Nanostructured Systems for Pluripotent Stem Cell Culture

  • Michael R. ZoncaJr.
  • Yubing XieEmail author
Article

Abstract

Due to their self-renewal capacity, pluripotent stem cells have great potential in the fields of drug discovery, tissue regeneration, and cell therapy. Micro- and nanostructured systems (e.g., micro nanofibers, nanofilms, microcarriers, and microcapsules) have been developed to culture pluripotent stem cells. To achieve the full potential of these cells, strategies must be implemented to maintain them in a pluripotent state during expansion and direct them to desired cell lineage with high efficiency. Substrate chemistry plays a critical role in regulating stem cell fate decision. This article will discuss the roles of both peptide-based and organic-based surface chemistries and their potential to mimic cell–ECM binding, therefore influencing long-term stem cell self-renewal, maintenance of pluripotency, and differentiation. High-throughput approaches will enable the identification of the optimal substrate chemistries for pluripotent stem cell attachment, long-term maintenance, and directed differentiation. The incorporation of the optimal substrate chemistry into micro- and nanostructured systems will offer the most efficient approach to pluripotent stem cell propagation and differentiation.

Keywords

Surface chemistry Embryonic stem cell Induced pluripotent stem cell Nanofiber Microcarrier Hydrogel 

Notes

Acknowledgements

This material is based upon work supported by the National Science Foundation under grant no. CBET 0846270 and DBI 0922830. We thank Professor Georges Belfort at Rensselaer Polytechnic Institute for insightful discussions.

References

  1. 1.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.CrossRefGoogle Scholar
  2. 2.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.CrossRefGoogle Scholar
  3. 3.
    Loebel, D. A. F., Watson, C. M., De Young, R. A., Tam, P. P. L. (2003). Lineage choice and differentiation in mouse embryos and embryonic stem cells. Developmental Biology, 264(1), 1–14.CrossRefGoogle Scholar
  4. 4.
    Li, S. C., Wang, L., Jiang, H., Acevedo, J., Chang, A. C., Loudon, W. G. (2009). Stem cell engineering for treatment of heart diseases: potentials and challenges. Cell Biology International, 33(3), 255–267.CrossRefGoogle Scholar
  5. 5.
    Meng, J., Muntoni, F., Morgan, J. E. (2011). Stem cells to treat muscular dystrophies—where are we? Neuromuscular Disorders, 21(1), 4–12.CrossRefGoogle Scholar
  6. 6.
    Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences, 78(12), 7634–7638.CrossRefGoogle Scholar
  7. 7.
    Yue, X.-S., Fujishiro, M., Nishioka, C., Arai, T., Takahashi, E., Gong, J.-S., et al. (2012). Feeder cells support the culture of induced pluripotent stem cells even after chemical fixation. PLoS One, 7(3), 1–9.CrossRefGoogle Scholar
  8. 8.
    Solter, D. (2006). From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nature Reviews Genetics, 7(4), 319–327.CrossRefGoogle Scholar
  9. 9.
    Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., Gearing, D. P., et al. (1988). Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 336(6200), 684–687.CrossRefGoogle Scholar
  10. 10.
    Blow, N. (2008). Stem Cells: in search of common ground. Nature, 451(7180), 855–858.CrossRefGoogle Scholar
  11. 11.
    Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., Gold, J. D., et al. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Natural Biotechnology, 19(10), 971–974.CrossRefGoogle Scholar
  12. 12.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.CrossRefGoogle Scholar
  13. 13.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.CrossRefGoogle Scholar
  14. 14.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.CrossRefGoogle Scholar
  15. 15.
    Park, I.-H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.CrossRefGoogle Scholar
  16. 16.
    Singh, M. D., Kreiner, M., McKimmie, C. S., Holt, S., van der Walle, C. F., Graham, G. J. (2009). Dimeric integrin alpha5beta1 ligands confer morphological and differentiation responses to murine embryonic stem cells. Biochemical and Biophysical Research Communications, 390(3), 716–721.CrossRefGoogle Scholar
  17. 17.
    Heydarkhan-Hagvall, S., Gluck, J. M., Delman, C., Jung, M., Ehsani, N., Full, S., et al. (2012). The effect of vitronectin on the differentiation of embryonic stem cells in a 3D culture system. Biomaterials, 33(7), 2032–2040.CrossRefGoogle Scholar
  18. 18.
    Marinkovich, M. P. (2007). Laminin 332 in squamous-cell carcinoma. Nature Reviews. Cancer, 7(5), 370–380.CrossRefGoogle Scholar
  19. 19.
    Rodin, S., Domogatskaya, A., Strom, S., Hansson, E. M., Chien, K. R., Inzunza, J., et al. (2010). Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Natural Biotechnology, 28(6), 611–615.CrossRefGoogle Scholar
  20. 20.
    Fok, E. Y. L., & Zandstra, P. W. (2005). Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body–based differentiation. Stem Cells, 23(9), 1333–1342.CrossRefGoogle Scholar
  21. 21.
    Abranches, E., Bekman, E., Henrique, D., Cabral, J. M. S. (2007). Expansion of mouse embryonic stem cells on microcarriers. Biotechnology and Bioengineering, 96(6), 1211–1221.CrossRefGoogle Scholar
  22. 22.
    Phillips, B. W., Horne, R., Lay, T. S., Rust, W. L., Teck, T. T., Crook, J. M. (2008). Attachment and growth of human embryonic stem cells on microcarriers. Journal of Biotechnology, 138(1–2), 24–32.CrossRefGoogle Scholar
  23. 23.
    Nie, Y., Bergendahl, V., Hei, D. J., Jones, J. M., Palecek, S. P. (2009). Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnology Progress, 25(1), 20–31.CrossRefGoogle Scholar
  24. 24.
    Oh, S. K. W., Chen, A. K., Mok, Y., Chen, X., Lim, U. M., Chin, A., et al. (2009). Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Research, 2(3), 219–230.CrossRefGoogle Scholar
  25. 25.
    Alfred, R., Radford, J., Fan, J., Boon, K., Krawetz, R., Rancourt, D., et al. (2011). Efficient suspension bioreactor expansion of murine embryonic stem cells on microcarriers in serum-free medium. Biotechnology Progress, 27(3), 811–823.CrossRefGoogle Scholar
  26. 26.
    Chen, A. K.-L., Chen, X., Choo, A. B. H., Reuveny, S., Oh, S. K. W. (2011). Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research, 7(2), 97–111.CrossRefGoogle Scholar
  27. 27.
    Serra, M., Correia, C., Malpique, R., Brito, C., Jensen, J., Bjorquist, P., et al. (2011). Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One, 6(8), 1–13.CrossRefGoogle Scholar
  28. 28.
    Gerecht, S., Burdick, J. A., Ferreira, L. S., Townsend, S. A., Langer, R., Vunjak-Novakovic, G. (2007). Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences, 104(27), 11298–11303.CrossRefGoogle Scholar
  29. 29.
    Siti-Ismail, N., Bishop, A. E., Polak, J. M., Mantalaris, A. (2008). The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials, 29(29), 3946–3952.CrossRefGoogle Scholar
  30. 30.
    Li, Z., Leung, M., Hopper, R., Ellenbogen, R., Zhang, M. (2010). Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials, 31(3), 404–412.CrossRefGoogle Scholar
  31. 31.
    Elefanty, A. G., & Stanley, E. G. (2010). Defined substrates for pluripotent stem cells: are we there yet? Natural Methods, 7(12), 967–968.CrossRefGoogle Scholar
  32. 32.
    Klim, J. R., Li, L., Wrighton, P. J., Piekarczyk, M. S., Kiessling, L. L. (2010). A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Natural Methods, 7(12), 989–994.CrossRefGoogle Scholar
  33. 33.
    Melkoumian, Z., Weber, J. L., Weber, D. M., Fadeev, A. G., Zhou, Y., Dolley-Sonneville, P., et al. (2010). Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology, 28(6), 606–610.CrossRefGoogle Scholar
  34. 34.
    Villa-Diaz, L. G., Nandivada, H., Ding, J., Nogueira-de-Souza, N. C., Krebsbach, P. H., O'Shea, K. S., et al. (2010). Synthetic polymer coatings for long-term growth of human embryonic stem cells. Natural Biotechnology, 28(6), 581–583.CrossRefGoogle Scholar
  35. 35.
    Mei, Y., Saha, K., Bogatyrev, S. R., Yang, J., Hook, A. L., Kalcioglu, Z. I., et al. (2010). Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Materials, 9(9), 768–778.CrossRefGoogle Scholar
  36. 36.
    Brafman, D. A., Chang, C. W., Fernandez, A., Willert, K., Varghese, S., Chien, S. (2010). Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 31(34), 9135–9144.CrossRefGoogle Scholar
  37. 37.
    Ayala, R., Zhang, C., Yang, D., Hwang, Y., Aung, A., Shroff, S. S., et al. (2011). Engineering the cell-material interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials, 32(15), 3700–3711.CrossRefGoogle Scholar
  38. 38.
    Raymond, K., Deugnier, M.-A., Faraldo, M. M., Glukhova, M. A. (2009). Adhesion within the stem cell niches. Current Opinion in Cell Biology, 21(5), 623–629.CrossRefGoogle Scholar
  39. 39.
    Kleinman, H. K., McGarvey, M. L., Liotta, L. A., Robey, P. G., Tryggvason, K., Martin, G. R. (1982). Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 21(24), 6188–6193.CrossRefGoogle Scholar
  40. 40.
    Hansen, K. C., Kiemele, L., Maller, O., O'Brien, J., Shankar, A., Fornetti, J., et al. (2009). An in-solution ultrasonication-assisted digestion method for improved extracellular matrix proteome coverage. Molecular & Cellular Proteomics, 8(7), 1648–1657.CrossRefGoogle Scholar
  41. 41.
    Redmer, T., Diecke, S., Grigoryan, T., Quiroga-Negreira, A., Birchmeier, W., Besser, D. (2011). E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Reports, 12(7), 720–726.CrossRefGoogle Scholar
  42. 42.
    Nagaoka, M., Koshimizu, U., Yuasa, S., Hattori, F., Chen, H., Tanaka, T., et al. (2006). E-cadherin-coated plates maintain pluripotent ES cells without colony formation. PLoS One, 1(1), e15.CrossRefGoogle Scholar
  43. 43.
    Nagaoka, M., Si-Tayeb, K., Akaike, T., Duncan, S. (2010). Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Developmental Biology, 10(1), 60.CrossRefGoogle Scholar
  44. 44.
    Prowse, A. B. J., Chong, F., Gray, P. P., Munro, T. P. (2011). Stem cell integrins: implications for ex-vivo culture and cellular therapies. Stem Cell Research, 6(1), 1–12.CrossRefGoogle Scholar
  45. 45.
    Takagi, J., & Springer, T. A. (2002). Integrin activation and structural rearrangement. Immunological Reviews, 186(1), 141–163.CrossRefGoogle Scholar
  46. 46.
    Liao, H., Huang, W., Schachner, M., Guan, Y., Guo, J., Yan, J., et al. (2008). β1 Integrin-mediated effects of tenascin-R domains EGFL and FN6-8 on neural stem/progenitor cell proliferation and differentiation in vitro. The Journal of Biological Chemistry, 283(41), 27927–27936.CrossRefGoogle Scholar
  47. 47.
    Howlett, A. R., Bailey, N., Damsky, C., Petersen, O. W., Bissell, M. J. (1995). Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma. Journal of Cell Science, 108(5), 1945–1957.Google Scholar
  48. 48.
    Hayashi, Y., Furue, M. K., Okamoto, T., Ohnuma, K., Myoishi, Y., Fukuhara, Y., et al. (2007). Integrins regulate mouse embryonic stem cell self-renewal. Stem Cells, 25(12), 3005–3015.CrossRefGoogle Scholar
  49. 49.
    Meng, Y., Eshghi, S., Li, Y. J., Schmidt, R., Schaffer, D. V., Healy, K. E. (2010). Characterization of integrin engagement during defined human embryonic stem cell culture. The FASEB Journal, 24(4), 1056–1065.CrossRefGoogle Scholar
  50. 50.
    Lee, S. T., Yun, J. I., Jo, Y. S., Mochizuki, M., van der Vlies, A. J., Kontos, S., et al. (2010). Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials, 31(6), 1219–1226.CrossRefGoogle Scholar
  51. 51.
    Domogatskaya, A., Rodin, S., Boutaud, A., Tryggvason, K. (2008). Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells, 26(11), 2800–2809.CrossRefGoogle Scholar
  52. 52.
    Saha, K., Mei, Y., Reisterer, C. M., Pyzocha, N. K., Yang, J., Muffat, J., et al. (2011). Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proceedings of the National Academy of Sciences, 108(46), 18714–18719.CrossRefGoogle Scholar
  53. 53.
    Mager, M. D., LaPointe, V., Stevens, M. M. (2011). Exploring and exploiting chemistry at the cell surface. Nature Chemistry, 3(8), 582–589.CrossRefGoogle Scholar
  54. 54.
    Ferreira, L., Karp, J. M., Nobre, L., Langer, R. (2008). New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell, 3(2), 136–146.CrossRefGoogle Scholar
  55. 55.
    Lutolf, M. P., Gilbert, P. M., Blau, H. M. (2009). Designing materials to direct stem-cell fate. Nature, 462(7272), 433–441.CrossRefGoogle Scholar
  56. 56.
    Mahlstedt, M. M., Anderson, D., Sharp, J. S., McGilvray, R., Barbadillo Muñoz, M. D., Buttery, L. D., et al. (2010). Maintenance of pluripotency in human embryonic stem cells cultured on a synthetic substrate in conditioned medium. Biotechnology and Bioengineering, 105(1), 130–140.CrossRefGoogle Scholar
  57. 57.
    Wells, N., Baxter, M. A., Turnbull, J. E., Murray, P., Edgar, D., Parry, K. L., et al. (2009). The geometric control of E14 and R1 mouse embryonic stem cell pluripotency by plasma polymer surface chemical gradients. Biomaterials, 30(6), 1066–1070.CrossRefGoogle Scholar
  58. 58.
    Valamehr, B., Jonas, S. J., Polleux, J., Qiao, R., Guo, S., Gschweng, E. H., et al. (2008). Hydrophobic surfaces for enhanced differentiation of embryonic stem cell-derived embryoid bodies. Proceedings of the National Academy of Sciences, 105(38), 14459–14464.CrossRefGoogle Scholar
  59. 59.
    Anderson, D. G., Levenberg, S., Langer, R. (2004). Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Natural Biotechnology, 22(7), 863–866.CrossRefGoogle Scholar
  60. 60.
    Derda, R., Musah, S., Orner, B. P., Klim, J. R., Li, L., Kiessling, L. L. (2010). High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. Journal of the American Chemical Society, 132(4), 1289–1295.CrossRefGoogle Scholar
  61. 61.
    Beachley, V., & Wen, X. (2010). Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Progress in Polymer Science, 35(7), 868–892.CrossRefGoogle Scholar
  62. 62.
    Massumi, M., Abasi, M., Babaloo, H., Terraf, P., Safi, M., Saeed, M., et al. (2012). The effect of topography on differentiation fates of matrigel-coated mouse embryonic stem cells cultured on PLGA nanofibrous scaffolds. Tissue Engineering. Part A, 18(5–6), 609–620.CrossRefGoogle Scholar
  63. 63.
    Nur-E-Kamal, A., Ahmed, I., Kamal, J., Schindler, M., Meiners, S. (2006). Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells, 24(2), 426–433.CrossRefGoogle Scholar
  64. 64.
    Nur-E-Kamal, A., Ahmed, I., Kamal, J., Babu, A., Schindler, M., Meiners, S. (2008). Covalently attached FGF-2 to three-dimensional polyamide nanofibrillar surfaces demonstrates enhanced biological stability and activity. Molecular and Cellular Biochemistry, 309(1), 157–166.CrossRefGoogle Scholar
  65. 65.
    Gauthaman, K., Venugopal, J. R., Yee, F. C., Peh, G. S. L., Ramakrishna, S., Bongso, A. (2009). Nanofibrous substrates support colony formation and maintain stemness of human embryonic stem cells. Journal of Cellular and Molecular Medicine, 13(9b), 3475–3484.CrossRefGoogle Scholar
  66. 66.
    Liu, L., Yuan, Q., Shi, J., Li, X., Jung, D., Wang, L., Yamauchi, K., Nakatsuji, N., Kamei, K., Chen, Y. (2012). Chemically-defined scaffolds created with electrospun synthetic nanofibers to maintain mouse embryonic stem cell culture under feeder-free conditions. Biotechnology Letters (in press)Google Scholar
  67. 67.
    Hashemi, S. M., Soudi, S., Shabani, I., Naderi, M., Soleimani, M. (2011). The promotion of stemness and pluripotency following feeder-free culture of embryonic stem cells on collagen-grafted 3-dimensional nanofibrous scaffold. Biomaterials, 32(30), 7363–7374.CrossRefGoogle Scholar
  68. 68.
    Yang, F., Murugan, R., Wang, S., Ramakrishna, S. (2005). Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 26(15), 2603–2610.CrossRefGoogle Scholar
  69. 69.
    Xie, J., Willerth, S. M., Li, X., Macewan, M. R., Rader, A., Sakiyama-Elbert, S. E., et al. (2009). The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials, 30(3), 354–362.CrossRefGoogle Scholar
  70. 70.
    Mahairaki, V., Lim, S. H., Christopherson, G. T., Xu, L., Nasonkin, I., Yu, C., et al. (2011). Nanofiber matrices promote the neuronal differentiation of human embryonic stem cell-derived neural precursors in vitro. Tissue Engineering Part A, 17(5–6), 855–863.CrossRefGoogle Scholar
  71. 71.
    Prabhakaran, M. P., Venugopal, J. R., Ramakrishna, S. (2009). Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials, 30(28), 4996–5003.CrossRefGoogle Scholar
  72. 72.
    Shahbazi, E., Kiani, S., Gourabi, H., Baharvand, H. (2011). Electrospun nanofibrillar surfaces promote neuronal differentiation and function from human embryonic stem cells. Tissue Engineering. Part A, 17(23–24), 3021–3031.CrossRefGoogle Scholar
  73. 73.
    Rahjouei, A., Kiani, S., Zahabi, A., Mehrjardi, N., Hashemi, M., Baharvand, H. (2011). Interactions of human embryonic stem cell-derived neural progenitors with an electrospun nanofibrillar surface in vitro. The International Journal of Artificial Organs, 34(7), 559–570.CrossRefGoogle Scholar
  74. 74.
    Wang, J., Ye, R., Wei, Y., Wang, H., Xu, X., Zhang, F., et al. (2012). The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. Journal of Biomedical Materials Research. Part A, 100A(3), 632–645.CrossRefGoogle Scholar
  75. 75.
    Prabhakaran, M. P., Ghasemi-Mobarakeh, L., Jin, G., Ramakrishna, S. (2011). Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. Journal of Bioscience and Bioengineering, 112, 501–507.CrossRefGoogle Scholar
  76. 76.
    Kabiri, M., Soleimani, M., Shabani, I., Futrega, K., Ghaemi, N., Ahvaz, H., et al. (2012). Neural differentiation of mouse embryonic stem cells on conductive nanofiber scaffolds. Biotechnology Letters, 34(7), 1357–1365.CrossRefGoogle Scholar
  77. 77.
    Br, P., Jiao, Y., Novozhilova, E., Stupp, S. I., Olivius, P. (2012). Survival, migration and differentiation of mouse tau-GFP embryonic stem cells transplanted into the rat auditory nerve. Experimental Neurology, 235(2), 599–609.CrossRefGoogle Scholar
  78. 78.
    Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.CrossRefGoogle Scholar
  79. 79.
    Pek, Y. S., Wan, A. C. A., Ying, J. Y. (2010). The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials, 31(3), 385–391.CrossRefGoogle Scholar
  80. 80.
    Leipzig, N. D., & Shoichet, M. S. (2009). The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials, 30(36), 6867–6878.CrossRefGoogle Scholar
  81. 81.
    Zoldan, J., Karagiannis, E. D., Lee, C. Y., Anderson, D. G., Langer, R., Levenberg, S. (2011). The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials, 32(36), 9612–9621.CrossRefGoogle Scholar
  82. 82.
    Li, W.-J., Tuli, R., Okafor, C., Derfoul, A., Danielson, K. G., Hall, D. J., et al. (2005). A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 26(6), 599–609.CrossRefGoogle Scholar
  83. 83.
    Garreta, E., Genové, E., Borrós, S., Semino, C. (2006). Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold. Tissue Engineering. Part A, 12(8), 2215–2227.Google Scholar
  84. 84.
    Marí-Buyé, N., & Semino, C. (2011). Differentiation of mouse embryonic stem cells in self-assembling peptide scaffolds. Methods in Molecular Biology, 690, 217–237.CrossRefGoogle Scholar
  85. 85.
    Smith, L. A., Liu, X., Hu, J., Ma, P. X. (2009). The influence of three-dimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells. Biomaterials, 30(13), 2516–2522.CrossRefGoogle Scholar
  86. 86.
    Smith, L. A., Liu, X., Hu, J., Ma, P. X. (2010). The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials, 31(21), 5526–5535.CrossRefGoogle Scholar
  87. 87.
    Smith, L., Liu, X., Hu, J., Wang, P., Ma, P. (2009). Enhancing osteogenic differentiation of mouse embryonic stem cells by nanofibers. Tissue Engineering. Part A, 15(7), 1855–1864.CrossRefGoogle Scholar
  88. 88.
    Hu, J., Smith, L., Feng, K., Liu, X., Sun, H., Ma, P. (2010). Response of human embryonic stem cell-derived mesenchymal stem cells to osteogenic factors and architectures of materials during in vitro osteogenesis. Tissue Engineering. Part A, 16(11), 3507–3514.CrossRefGoogle Scholar
  89. 89.
    Jin, G., Prabhakaran, M. P., Ramakrishna, S. (2011). Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomaterialia, 7(8), 3113–3122.CrossRefGoogle Scholar
  90. 90.
    Shalumon, K. T., Anulekha, K. H., Chennazhi, K. P., Tamura, H., Nair, S. V., Jayakumar, R. (2011). Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering. International Journal of Biological Macromolecules, 48(4), 571–576.CrossRefGoogle Scholar
  91. 91.
    Lee, H., Scherer, N. F., Messersmith, P. B. (2006). Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 103(35), 12999–13003.CrossRefGoogle Scholar
  92. 92.
    Rim, N. G., Kim, S. J., Shin, Y. M., Jun, I., Lim, D. W., Park, J. H., et al. (2012). Mussel-inspired surface modification of poly(l-lactide) electrospun fibers for modulation of osteogenic differentiation of human mesenchymal stem cells. Colloids and Surfaces. B, Biointerfaces, 91, 189–197.CrossRefGoogle Scholar
  93. 93.
    Guan, J., Wang, F., Li, Z., Chen, J., Guo, X., Liao, J., et al. (2011). The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials, 32(24), 5568–5580.CrossRefGoogle Scholar
  94. 94.
    Meng, Q., Haque, A., Hexig, B., Akaike, T. (2012). The differentiation and isolation of mouse embryonic stem cells toward hepatocytes using galactose-carrying substrata. Biomaterials, 33(5), 1414–1427.CrossRefGoogle Scholar
  95. 95.
    Farzaneh, Z., Pournasr, B., Ebrahimi, M., Aghdami, N., Baharvand, H. (2010). Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Reviews and Reports, 6(4), 601–610.CrossRefGoogle Scholar
  96. 96.
    Kang, X., Xie, Y., Powell, H. M., James Lee, L., Belury, M. A., Lannutti, J. J., et al. (2007). Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials, 28(3), 450–458.CrossRefGoogle Scholar
  97. 97.
    Blin, G., Lablack, N., Louis-Tisserand, M., Nicolas, C., Picart, C., Puceat, M. (2010). Nano-scale control of cellular environment to drive embryonic stem cells self-renewal and fate. Biomaterials, 31(7), 1742–1750.CrossRefGoogle Scholar
  98. 98.
    Wang, Y., Kim, U.-J., Blasioli, D. J., Kim, H.-J., Kaplan, D. L. (2005). In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials, 26(34), 7082–7094.CrossRefGoogle Scholar
  99. 99.
    Guttinger, M., Padrun, V., Pralong, W. F., Boison, D. (2005). Seizure suppression and lack of adenosine A1 receptor desensitization after focal long-term delivery of adenosine by encapsulated myoblasts. Experimental Neurology, 193(1), 53–64.CrossRefGoogle Scholar
  100. 100.
    Uebersax, L., Fedele, D. E., Schumacher, C., Kaplan, D. L., Merkle, H. P., Boison, D., et al. (2006). The support of adenosine release from adenosine kinase deficient ES cells by silk substrates. Biomaterials, 27(26), 4599–4607.CrossRefGoogle Scholar
  101. 101.
    Chen, J. L., Yin, Z., Shen, W. L., Chen, X., Heng, B. C., Zou, X. H., et al. (2010). Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials, 31(36), 9438–9451.CrossRefGoogle Scholar
  102. 102.
    Yang, M.-C., Wang, S.-S., Chou, N.-K., Chi, N.-H., Huang, Y.-Y., Chang, Y.-L., et al. (2009). The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin polysaccharide cardiac patches in vitro. Biomaterials, 30(22), 3757–3765.CrossRefGoogle Scholar
  103. 103.
    Newman, K. D., & McBurney, M. W. (2004). Poly(d, l lactic-co-glycolic acid) microspheres as biodegradable microcarriers for pluripotent stem cells. Biomaterials, 25(26), 5763–5771.CrossRefGoogle Scholar
  104. 104.
    Fernandes, A. M., Fernandes, T. G., Diogo, M. M., da Silva, C. L., Henrique, D., Cabral, J. M. S. (2007). Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. Journal of Biotechnology, 132(2), 227–236.CrossRefGoogle Scholar
  105. 105.
    Ferreira, L. S., Gerecht, S., Fuller, J., Shieh, H. F., Vunjak-Novakovic, G., Langer, R. (2007). Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials, 28(17), 2706–2717.CrossRefGoogle Scholar
  106. 106.
    Turley, E. A., Noble, P. W., Bourguignon, L. Y. W. (2002). Signaling properties of hyaluronan receptors. The Journal of Biological Chemistry, 277(7), 4589–4592.CrossRefGoogle Scholar
  107. 107.
    Jha, A. K., Xu, X., Duncan, R. L., Jia, X. (2011). Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials, 32(10), 2466–2478.CrossRefGoogle Scholar
  108. 108.
    Lei, Y., Gojgini, S., Lam, J., Segura, T. (2011). The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 32(1), 39–47.CrossRefGoogle Scholar
  109. 109.
    Liu, Y., Charles, L. F., Zarembinski, T. I., Johnson, K. I., Atzet, S. K., Wesselschmidt, R. L., et al. (2012). Modified hyaluronan hydrogels support the maintenance of mouse embryonic stem cells and human induced pluripotent stem cells. Macromolecular Bioscience, 12(8), 1034–1042.CrossRefGoogle Scholar
  110. 110.
    Gombotz, W. R., & Wee, S. (1998). Protein release from alginate matrices. Advanced Drug Delivery Reviews, 31(3), 267–285.CrossRefGoogle Scholar
  111. 111.
    Aslani, P., & Kennedy, R. A. (1996). Studies on diffusion in alginate gels. I. Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophen. Journal of Controlled Release, 42(1), 75–82.CrossRefGoogle Scholar
  112. 112.
    Jay, S. M., & Saltzman, W. M. (2009). Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. Journal of Controlled Release, 134(1), 26–34.CrossRefGoogle Scholar
  113. 113.
    Liu, L., Fishman, M. L., Kost, J., Hicks, K. B. (2003). Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials, 24(19), 3333–3343.CrossRefGoogle Scholar
  114. 114.
    Yu, C.-Y., Yin, B.-C., Zhang, W., Cheng, S.-X., Zhang, X.-Z., Zhuo, R.-X. (2009). Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property. Colloids and Surfaces. B, Biointerfaces, 68(2), 245–249.CrossRefGoogle Scholar
  115. 115.
    Augst, A. D., Kong, H. J., Mooney, D. J. (2006). Alginate hydrogels as biomaterials. Macromolecular Bioscience, 6(8), 623–633.CrossRefGoogle Scholar
  116. 116.
    Rowley, J. A., Madlambayan, G., Mooney, D. J. (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 20(1), 45–53.CrossRefGoogle Scholar
  117. 117.
    Kang, S.-W., Cha, B.-H., Park, H., Park, K.-S., Lee, K. Y., Lee, S.-H. (2011). The effect of conjugating RGD into 3D alginate hydrogels on adipogenic differentiation of human adipose-derived stromal cells. Macromolecular Bioscience, 11(5), 673–679.CrossRefGoogle Scholar
  118. 118.
    Wang, Y., Gao, J. Q., Zheng, C. H., Xu, D. H., Liang, W. Q. (2006). Biodegradable and complexed microspheres used for sustained delivery and activity protection of SOD. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 79(1), 74–78.CrossRefGoogle Scholar
  119. 119.
    Raof, N. A., Padgen, M. R., Gracias, A. R., Bergkvist, M., Xie, Y. (2011). One-dimensional self-assembly of mouse embryonic stem cells using an array of hydrogel microstrands. Biomaterials, 32(20), 4498–4505.CrossRefGoogle Scholar
  120. 120.
    Raof, N. A., Raja, W. K., Castracane, J., Xie, Y. (2011). Bioengineering embryonic stem cell microenvironments for exploring inhibitory effects on metastatic breast cancer cells. Biomaterials, 32(17), 4130–4139.CrossRefGoogle Scholar
  121. 121.
    Raof, N. A., Mooney, B. M., Xie, Y. (2011). Bioengineering embryonic stem cell microenvironments for the study of breast cancer. International Journal of Molecular Sciences, 12(11), 7662–7691.CrossRefGoogle Scholar
  122. 122.
    Fernandes, T. G., Kwon, S.-J., Bale, S. S., Lee, M.-Y., Diogo, M. M., Clark, D. S., et al. (2010). Three-dimensional cell culture microarray for high-throughput studies of stem cell fate. Biotechnology and Bioengineering, 106(1), 106–118.Google Scholar
  123. 123.
    Magyar, J. P., Nemir, M., Ehler, E., Suter, N., Perriard, J.-C., Eppenberger, H. M. (2001). Mass production of embryoid bodies in microbeads. Annals of the New York Academy of Sciences, 944, 135–143.CrossRefGoogle Scholar
  124. 124.
    Chayosumrit, M., Tuch, B., Sidhu, K. (2010). Alginate microcapsule for propagation and directed differentiation of hESCs to definitive endoderm. Biomaterials, 31(3), 505–514.CrossRefGoogle Scholar
  125. 125.
    Fang, S., Y-d, Q., Mao, L., Shi X-l, Y., D-c, D. Y. (2007). Differentiation of embryoid-body cells derived from embryonic stem cells into hepatocytes in alginate microbeads in vitro. Acta Pharmacologica Sinica, 28(12), 1924–1930.CrossRefGoogle Scholar
  126. 126.
    Wang, N., Adams, G., Buttery, L., Falcone, F. H., Stolnik, S. (2009). Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. Journal of Biotechnology, 144(4), 304–312.CrossRefGoogle Scholar
  127. 127.
    Tuch, B. E., Hughes, T. C., Evans, M. D. M. (2011). Encapsulated pancreatic progenitors derived from human embryonic stem cells as a therapy for insulin-dependent diabetes. Diabetes/Metabolism Research and Reviews, 27(8), 928–932.CrossRefGoogle Scholar
  128. 128.
    Hwang, Y.-S., Cho, J., Tay, F., Heng, J. Y. Y., Ho, R., Kazarian, S. G., et al. (2009). The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials, 30(4), 499–507.CrossRefGoogle Scholar
  129. 129.
    Jing, D., Parikh, A., Tzanakakis, E. S. (2010). Cardiac cell generation from encapsulated embryonic stem cells in static and scalable culture systems. Cell Transplantation, 19(11), 1397–1412.CrossRefGoogle Scholar
  130. 130.
    Sidhu, K., Kim, J., Chayosumrit, M., Dean, S., Sachdev, P. (2012). Alginate microcapsule as a 3d platform for propagation and differentiation of human embryonic stem cells (hESC) to different lineages. Journal of Visualized Experiments, 61, e3608.Google Scholar
  131. 131.
    Li, L., Davidovich, A. E., Schloss, J. M., Chippada, U., Schloss, R. R., Langrana, N. A., et al. (2011). Neural lineage differentiation of embryonic stem cells within alginate microbeads. Biomaterials, 32(20), 4489–4497.CrossRefGoogle Scholar
  132. 132.
    Tang, M., Chen, W., Weir, MD., Thein-Han, W., Xu, HHK. (2012). Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering. Acta Biomaterialia (in press)Google Scholar
  133. 133.
    Zhang, X., He, H., Yen, C., Ho, W., Lee, L. J. (2008). A biodegradable, immunoprotective, dual nanoporous capsule for cell-based therapies. Biomaterials, 29(31), 4253–4259.CrossRefGoogle Scholar
  134. 134.
    Malpique, R., Tostões, R., Beier, A. F. J., Serra, M., Brito, C., Schulz, J. C., et al. (2012). Surface-based cryopreservation strategies for human embryonic stem cells: a comparative study. Biotechnology Progress, 28(4), 1079–1087.CrossRefGoogle Scholar
  135. 135.
    Sambu, S., Xu, X., Schiffter, H. A., Cui, Z. F., Ye, H. (2011). RGDS-fuctionalized alginates improve the survival rate of encapsulated embryonic stem cells during cryopreservation. CryoLetters, 32(5), 389–401.Google Scholar
  136. 136.
    Irwin, E. F., Gupta, R., Dashti, D. C., Healy, K. E. (2011). Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials, 32(29), 6912–6919.CrossRefGoogle Scholar
  137. 137.
    Bianco, A., Di Federico, E., Moscatelli, I., Camaioni, A., Armentano, I., Campagnolo, L., et al. (2009). Electrospun poly(Îμ-caprolactone)/Ca-deficient hydroxyapatite nanohybrids: microstructure, mechanical properties and cell response by murine embryonic stem cells. Materials Science and Engineering: C, 29(6), 2063–2071.CrossRefGoogle Scholar
  138. 138.
    Cho, Y. I., Choi, J. S., Jeong, S. Y., Yoo, H. S. (2010). Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomaterialia, 6(12), 4725–4733.CrossRefGoogle Scholar
  139. 139.
    Christopherson, G. T., Song, H., Mao, H.-Q. (2009). The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials, 30(4), 556–564.CrossRefGoogle Scholar
  140. 140.
    Zhou, J., Zhang, Y., Lin, Q., Liu, Z., Wang, H., Duan, C., et al. (2010). Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds. Journal of Genetics and Genomics, 37(7), 451–460.CrossRefGoogle Scholar
  141. 141.
    Liu, H., Fan, H., Wang, Y., Toh, S. L., Goh, J. C. H. (2008). The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomaterials, 29(6), 662–674.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.College of Nanoscale Science and EngineeringUniversity at Albany, State University of New YorkAlbanyUSA

Personalised recommendations