Advertisement

BioNanoScience

, Volume 2, Issue 4, pp 161–170 | Cite as

An Electronic Sensor for Detection of Early-Stage Biomarker/s for Ovarian Cancer

  • Allison M. Whited
  • Kanwar Vikas SinghEmail author
  • David Evans
  • Raj Solanki
Article

Abstract

An electronic sensor composed of interdigitated electrode arrays with nano-scale gaps has been investigated as a platform for label-free detection of ovarian cancer (OC) biomarkers. These electrodes, together with bio-affinity label-free sandwich immunoassay, were utilized as signal transducers. Electrochemical impedance spectroscopy (EIS) was employed as a technique for detection of affinity type interactions at the electrode surface. An unconventional approach is described for label-free impedimetric detection using faradic EIS at a DC bias less than the formal potential of the redox probe using nanogapped IDEAs as the transducing elements. The platform was optimized for detection of HE4, a biomarker for OC that is indicated in the early and late stages of the disease, along with CA-125 and CEA as conventional biomarkers that are currently used for diagnosis and monitoring of OC patients. The capability of the sensor platform to detect OC biomarkers in singular and multiplexed detection has been demonstrated. The sensor was successfully utilized for stand-alone detection of HE4 down to 1.5 ng/mL and was able to differentiate signal from three different biomarkers present in the same sample down to 100 pg/mL in a label-free biosensor assay.

Keywords

Interdigitated electrodes Array biosensor Ovarian cancer HE4 Electrochemical impedance spectroscopy 

Notes

Acknowledgments

The authors wish to thank Abnova Corp., Taiwan for providing us with antiHE4 antibodies and protein antigen, HE4.

Supplementary material

12668_2012_49_MOESM1_ESM.docx (519 kb)
ESM 1 (DOCX 518 kb)

References

  1. 1.
    Luong, J. H. T., Male, K. B., Glennon, J. D. (2008). Biosensor technology: technology push versus market pull. Biotechnology Advances, 26, 492–500.CrossRefGoogle Scholar
  2. 2.
    www.scholar.google.com, keyword Biosensor, (Articles only) limit 2001–2010, Keyword Biosensor Patents Granted difference of hits with (Articles only and articles including patents) limit 2001–2010. Accessed May 2012.
  3. 3.
    Turner, A. P. F., Karube, I., Wilson, G. S. (1987). Biosensors fundamentals and applications. Oxford: Oxford University Press.Google Scholar
  4. 4.
    Newman, J. D., & Turner, A. P. F. (2005). Home blood glucose biosensors: a commercial perspective. Biosensors & Bioelectronics, 20, 2435–2453.CrossRefGoogle Scholar
  5. 5.
    Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108, 814–825.CrossRefGoogle Scholar
  6. 6.
    Daniels, J. S., & Pourmand, N. (2007). Label-free impedance biosensors: opportunities and challenges. Electroanalytical, 19, 1239–1257.CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Thun, M. J. (2007). Cancer statistics, 2007. CA: A Cancer Journal for Clinicians, 57, 43–66.CrossRefGoogle Scholar
  9. 9.
    Goff, B. A., Mandel, L. S., Muntz, H. G., Melancon, C. H. (2000). Ovarian carcinoma diganosis. Cancer, 89, 2068–2075.CrossRefGoogle Scholar
  10. 10.
    Guppy, A. E., Nathan, P. D., Rustin, G. J. S. (2005). Epithelial ovarian cancer: a review of current management. Clinical Oncology, 17, 399–411.CrossRefGoogle Scholar
  11. 11.
    Howlader, N., Noone, A. M., Krapcho, M., Neyman, N., Aminou, R., Altekruse, S. F. (Eds). SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations), National Cancer Institute. Bethesda, MD. http://seer.cancer.gov/csr/1975_2009_pops09/.
  12. 12.
    Bast, R. C., Jr., Feeney, M., Lazarus, H., Nadler, L. M., Colvin, R. B., Knapp, R. C. (1981). Reactivity of a monoclonal antibody with human ovarian carcinoma. Journal of Clinical Investigation, 68, 1331–1337.CrossRefGoogle Scholar
  13. 13.
    Sarandakou, A., Protonotariou, E., Rizos, D. (2007). Tumor marker in biological fluids associated with pregnancy. Critical Reviews in Clinical Laboratory Sciences, 44, 151–178.CrossRefGoogle Scholar
  14. 14.
    Bagan, P., Berna, P., Assouad, J., Hupertan, V., Le Pimpec Barthes, F., Riquet, M. (2008). Value of cancer antigen 125 for diagnosis of pleural endometriosis in females with recurrent pneumothorax. European Respiratory Journal, 31, 140–142.CrossRefGoogle Scholar
  15. 15.
    Bast, R. C., Jr., Xu, F. J., Yu, Y. H., Barnhill, S., Zhang, Z., Mills, G. B. (1998). CA 125: the past and the future. The International Journal of Biological Markers, 13, 179–187.Google Scholar
  16. 16.
    Gold, P., & Freedman, S. O. (1965). Specific carcinoembryonic antigens of the human digestive system. The Journal of Experimental Medicine, 122, 467–481.CrossRefGoogle Scholar
  17. 17.
    Gold, P., & Freedman, S. O. (1965). Carcinoembryonic antigen in faeces. The Journal of Experimental Medicine, 121, 439–462.CrossRefGoogle Scholar
  18. 18.
    Hellstrom, I., Raycraft, J., Hayden-Ledbetter, M., Ledbetter, J., Schummer, M., McIntosh, M., et al. (2003). The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Research, 63, 3695–3700.Google Scholar
  19. 19.
    Galgano, M., Hampton, G., Frierson, H. F., Jr. (2006). Comprehensive analysis of HE4 expression in normal and malignant human tissues. Modern Pathology, 19, 847–853.Google Scholar
  20. 20.
    Hellstrom, I., & Hellstrom, K. E. (2008). SMRP and HE4 as biomarkers for ovarian carcinoma when used alone and in combination with CA125 and/or each other. Ovarian Cancer, 622, 15–21.CrossRefGoogle Scholar
  21. 21.
    Ruggeri, G., Bandiera, E., Zanotti, L., Belloli, S., Ravaggi, A., Romani, C., et al. (2011). HE4 and epithelial ovarian cancer: comparison and clinical evaluation of two immunoassays and a combination algorithm. Clinica Chimica Acta, 412, 447–1453.CrossRefGoogle Scholar
  22. 22.
    Drapkin, R., von Horsten, H., Lin, Y., Mok, S., Crum, C., Welch, W., et al. (2005). Human Epididymis Protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas. Cancer Research, 65, 2162–2169.CrossRefGoogle Scholar
  23. 23.
    Moore, R. G., Brown, A. K., Miller, C. M., et al. (2008). The use of multiple novel serum tumor markers for the detection of ovarian carcinoma in patients with a pelvic mass. Gynecologic Oncology, 108, 402–408.CrossRefGoogle Scholar
  24. 24.
    Fujirebio HE4 EIA test (package insert) http://www.fdi.com/documents/products/inserts/eia/HE4%20EIA%20404-10,%202008-09,%20r1.pdf. Accessed Nov 2011.
  25. 25.
    Bingle, L., Singleton, V., Bingle, C. D. (2002). The putative ovarian tumour marker gene HE4 (WFDC2), is expressed in normal tissues and undergoes complex alternative splicing to yield multiple protein isoforms. Oncogenesis, 21, 2768–2773.CrossRefGoogle Scholar
  26. 26.
    Ranganathan, S., Simpson, K. J., Shaw, D. C., Nicholas, K. R. (1999). The whey acidic protein family: a new signature motif and three-dimensional structure by comparative modeling. Journal of Molecular Graphics & Modelling, 17, 350–357.CrossRefGoogle Scholar
  27. 27.
    Bard, A. J., & Faulkner, L. R. (1980). Electrochemical methods: fundamentals and applications. New York: Wiley.Google Scholar
  28. 28.
    Lisdat, F., & Schafer, D. (2008). The use of electrochemical impedance spectroscopy for biosensing. Analytical and Bioanalytical Chemistry, 377, 521–527.Google Scholar
  29. 29.
    Dharuman, V., Grunwald, T., Nebling, E., Albers, J., Blohm, L., Hintsche, R. (2005). Label-free impedance detection of oligonucleotide hybridisation on interdigitated electrodes using electrochemical redox probes. Biosensors & Bioelectronics, 21, 645–654.CrossRefGoogle Scholar
  30. 30.
    Valera, E., Azcon, J. R., Rodriguez, A., Castaner, L. M., Sanchex, F. J., Macro, M. P. (2007). Impedimetric immunosensor for atrazine detection using interdigitated μ-electrodes (IDμEs). Sensors and Actuators B: Chemical, 125, 526–537.CrossRefGoogle Scholar
  31. 31.
    Brewood, G. P., Rangineni, Y., Fish, D. J., Bhandiwad, A. S., Evans, D. R., Solanki, R., et al. (2008). Electrical detection of the temperature induced melting transition of a DNA hairpin covalently attached to gold interdigitated microelectrodes. Nucleic Acids Research, 36, e98.CrossRefGoogle Scholar
  32. 32.
    Whited, A. M., Singh, K. V., Solanki, R., Evans, D. (2010). Label-free electrochemical impedance detection of ovarian cancer markers CA-125 and CEA. In J. A. Garrido, E. Johnston, C. Werner, T. Boland (Eds.), Biosurfaces and biointerfaces. Warrendale. Materials Research Society Symposium Proceedings, 1236E, 1236-SS05-09.Google Scholar
  33. 33.
    Singh, K. V., Whited, A. M., Ragineneni, Y., Barrett, T., King, J., Solanki, R. (2010). 3D Interdigitated electrode array biosensors. Analytical and Bioanalytical Chemistry, 397, 1493–1502.CrossRefGoogle Scholar
  34. 34.
    Singh, K. V., Bhura, D. K., Nandamuri, G., Whited, A. M., Evans, D., King, J., et al. (2011). Nanoparticle-enhanced sensitivity of a nanogap-interdigitated electrode array impedimetric biosensor. Langmuir, 27(22), 13931–13939.CrossRefGoogle Scholar
  35. 35.
    Dahlin, A. B., Dielacher, B., Rajendran, P., Sugihara, K., Sannomiya, T., Wong, M. Z., et al. (2012). Electrochemical plasmonic sensors. Analytical and Bioanalytical Chemistry, 402, 1773–1784.CrossRefGoogle Scholar
  36. 36.
    Mantzila, A. G., Maipa, V., Prodromidis, M. I. (2008). Development of a faradic impedimetric immunosensor for the detection of Salmonella typhimurium in milk. Analytical Chemistry, 80, 1169–1175.CrossRefGoogle Scholar
  37. 37.
    Wang, H., Chen, S., Li, L., Jiang, S. (2004). Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. Langmuir, 21(7), 2633–2636.CrossRefGoogle Scholar
  38. 38.
    Panke, O., Balkenhohl, T., Kafka, J., Schafer, D., Lisdat, F. (2008). Impedance spectroscopy and biosensing. Advances in Biochemical Engineering/Biotechnology, 109, 195–237.CrossRefGoogle Scholar
  39. 39.
    Delgado, A. V., Gonzalez, C. F., Hunter, R. J., Koopal, L. K., Lykema, J. (2005). Measurement and interpretation of electrokinetic phenomena (IUPAC Technical Report). Pure and Applied Chemistry, 77(10), 1753–1805.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Allison M. Whited
    • 1
  • Kanwar Vikas Singh
    • 1
    Email author
  • David Evans
    • 1
  • Raj Solanki
    • 1
  1. 1.Department of PhysicsPortland State UniversityPortlandUSA

Personalised recommendations