Advertisement

BioNanoScience

, Volume 2, Issue 4, pp 316–321 | Cite as

Extracellular Biosynthesis of Silver Nanoparticles Using Fungi Penicillium diversum and Their Antimicrobial Activity Studies

  • Sharanabasava V. Ganachari
  • Ravishankar Bhat
  • Raghunandan Deshpande
  • A. VenkataramanEmail author
Article

Abstract

In this present investigation, we report a simple, cost-effective, and eco-friendly method of synthesizing colloidal silver nanoparticles by using fungi Penicillium diversum. UV–visible spectroscopy studies were carried out to quantify the formation of silver nanoparticles. The X-ray diffraction pattern suggests the crystallinity of silver nanoparticles. Atomic force microscopy and transmission electron microscopy images show that the silver nanoparticles are polydispersed and are in a size range of 5 to 45 nm with an average size of 20 nm. From the Fourier transform infrared spectroscopy, we presume that the reductase enzyme present in the fungal extract may be responsible for the reduction and stabilization of the silver nanoparticles. The resultant silver nanoparticles showed effective antimicrobial activity against Escherichia coli, Salmonella typhi, Vibrio cholerae, and the clinical isolate of Paratyphia.

Keywords

Extracellular biosynthesis Silver nanoparticles Penicillium diversum Morphological study Antimicrobial activity 

Notes

Acknowledgments

The authors are grateful to UGC, Major Research Project (F. No. 33-307/2007 (SR), DAE-BRNS Project (No.2009/34/14/BRNS), and VGST (SMYSR-D38/7), Bangalore, for financial assistance. We also acknowledge help from SAIF, IIT Mumbai for TEM measurements, and Biogenics, Hubli, for antimicrobial studies. We thank Shri. Jagannathrao M. Deshpande, father of author Raghunandan Deshpande, for editing work.

References

  1. 1.
    Gajbhiye, M., Kesharwani, J., et al. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology, and Medicine, 5, 382–386.CrossRefGoogle Scholar
  2. 2.
    Ahmad, A., Mukherjee, P., et al. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces. B, Biointerfaces, 28, 313–318.CrossRefGoogle Scholar
  3. 3.
    Bigall, N. C., & Eychmüller, A. (2010). Synthesis of noble metal nanoparticles and their non-ordered superstructures. Philosophical Transactions of the Royal Society, 368(1915), 1385–1404.CrossRefGoogle Scholar
  4. 4.
    Feymen, R. (1991). There's plenty of room at the bottom. Science, 254, 1300–1301.CrossRefGoogle Scholar
  5. 5.
    Verma, A., & Stellacci, F. (2010). Effect of surface properties on nanoparticle–cell interactions. Small, 6, 12–21.CrossRefGoogle Scholar
  6. 6.
    Sau, T. K., Rogach, A. L., et al. (2010). Properties and applications of colloidal nonspherical noble metal nanoparticles. Advanced Materials, 22, 1805–1825.CrossRefGoogle Scholar
  7. 7.
    Camelio, S., Babonneau, D., et al. (2009). Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion. Physical Review B, 80, 155434.CrossRefGoogle Scholar
  8. 8.
    Lansdown, A. B. G. (2010). A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Advances in Pharmacological Sciences, Article ID, 910686. doi: 10.1155/2010/910686.
  9. 9.
    Dankovich, T. A., & Gray, D. G. (2011). Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environmental Science and Technology, 45, 1992–1998.CrossRefGoogle Scholar
  10. 10.
    Ahmed, A., Senapati, S., et al. (2003). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete Thermonospora sp. Langmuir, 19, 3550–3553.CrossRefGoogle Scholar
  11. 11.
    Mandal, D., Bolander, M. E., et al. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 69(5), 485–492.CrossRefGoogle Scholar
  12. 12.
    Bhanska, K. C., & D’Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids and Surfaces. B, Biointerfaces, 47, 160–164.CrossRefGoogle Scholar
  13. 13.
    Mukherjee, P., Ahmed, A., et al. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Letters, 1(10), 515–519.CrossRefGoogle Scholar
  14. 14.
    Bsavaraja, S., Balaji, S. D., et al. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43, 1164–1170.CrossRefGoogle Scholar
  15. 15.
    Balaji, D. S., Basavaraja, S., et al. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces. B, Biointerfaces, 68, 88–92.CrossRefGoogle Scholar
  16. 16.
    Philip, D. (2009). Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 73, 374–381.CrossRefGoogle Scholar
  17. 17.
    Bhat, R., Deshpande, R., et al. (2011) Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorganic chemistry and Applications., Article ID 650979.Google Scholar
  18. 18.
    Shankar, S. S., Rai, A., et al. (2004). Rapid synthesis of Au, Ag and bimetallic Au core Ag shell nanoparticles using neem (Azaridachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496–502.CrossRefGoogle Scholar
  19. 19.
    Gardea-Torresdey, J. L., Gomez, E., et al. (2004). Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir, 19(4), 1357–1361.CrossRefGoogle Scholar
  20. 20.
    Raghunandan, D., Mahesh, B. D., et al. (2011). Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract. J Nanopart Res., 13(5), 2021–2028.CrossRefGoogle Scholar
  21. 21.
    Raghunandan, D., Basavaraja, S., et al. (2010). Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids and Surfaces. B, Biointerfaces, 79, 235–240.CrossRefGoogle Scholar
  22. 22.
    Jaya, J., Smith, A., et al. (2009). Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Molecular Pharmaceutics, 6, 1388–1401.CrossRefGoogle Scholar
  23. 23.
    Vigneshwaran, N., Arati, A., et al. (2006). Biomimetics of silver nanoparticles by white rot fungus. Phaenerochaete Chrysosporium Colloids and Surfaces B: Biointerfaces, 53, 55–59.CrossRefGoogle Scholar
  24. 24.
    Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry. Chichester: Wiley.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sharanabasava V. Ganachari
    • 1
  • Ravishankar Bhat
    • 1
  • Raghunandan Deshpande
    • 2
  • A. Venkataraman
    • 1
    Email author
  1. 1.Materials Chemistry Laboratory, Department of Materials ScienceGulbarga UniversityGulbargaIndia
  2. 2.H.K.E.’s Matoshree Taradevi Rampure Institute of Pharmaceutical SciencesGulbargaIndia

Personalised recommendations