Skip to main content

Anti-enteroviral Activity of Microalgal Extracts Probed by Bionanohybrids of Quantum Dots and Viruses

Abstract

Enterovirus 71 (EV71) disease currently lacks effective prevention and treatment. Developing a rapid and efficient drug-screening platform could expedite the discovery of potential anti-EV71 agents. Water-suspensible fluorescent CdSe/ZnS quantum dots (QDs) employed as imaging probes were fabricated by using amphiphilic alginate to form hydrophobic interaction with hydrophobic surfactant layer originally harnessed to stabilize QDs in organic phase. In the presence of 50 μg/mL cationic polybrene, bionanohybrids of QDs and EV71 formed via colloidal clustering of both negatively charged QDs (−7.38 mV) and EV71 (−9.27 mV) were detected to be positively charged (5.58 mV) and confirmed by transmission electron microscopy micrographs with sizes around 30–40 nm. The formation of QD-EV71 bionanohybrids was also verified by the appearance of QD fluorescence within BHK-21 cells treated with QD–EV71 bionanohybrids. Fluorescent images of BHK-21 cells, pretreated with various concentrations of allophycocyanin (APC) or C-phycocyanin (CPC) extracted from microalgae for 1 h and subsequently challenged with QD–EV71 bionanohybrids for 60 min, were taken by confocal laser scanning microscopy. According to our cell-based fluorescent imaging platform, the minimal effective anti-EV71 concentration of APC and CPC was determined to be 50 and 10 μg/mL, respectively. In summary, the present study demonstrated the infectivity of QD–EV71 bionanohybrids remained intact to be internalized by cells susceptible to EV71 and anti-EV71 effectiveness of two microalgae extracts was rapidly visualized by blocking cell entry of fluorescent imaging probes (i.e., QD-EV71 bionanohybrids).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Cardosa, M. J., Perera, D., Brown, B. A., Cheon, D., Chan, H. M., Chan, K. P., et al. (2003). Molecular epidemiology of human enterovirus 71 strains and recent outbreaks in the Asia-Pacific region: Comparative analysis of the VP1 and VP4 genes. Emerging Infectious Diseases, 9, 461–468.

    Google Scholar 

  2. Chang, L. Y., Hsia, S. H., Wu, C. T., Huang, Y. C., Lin, K. L., Fang, T. Y., et al. (2004). Outcome of enterovirus 71 infections with or without stage-based management: 1998 to 2002. Pediatric Infectious Disease Journal, 23, 327–332.

    Article  Google Scholar 

  3. Ho, M. (2000). Enterovirus 71: The virus, its infections and outbreaks. Journal of Microbiology, Immunology and Infection, 33, 205–216.

    Google Scholar 

  4. Li, L., He, Y., Yang, H., Zhu, J., Xu, X., Dong, J., et al. (2005). Genetic characteristics of human enterovirus 71 and coxsackievirus A16 circulating from 1999 to 2004 in Shenzhen, People’s Republic of China. Journal of Clinical Microbiology, 43, 3835–3839.

    Article  Google Scholar 

  5. McMinn, P. C., Stratov, I., Nagarajan, L., Davis, S. (2001). Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in Western Australia. Clinical Infectious Diseases, 32, 236–242.

    Article  Google Scholar 

  6. Shimizu, H., Utama, A., Onnimala, N., Li, C., Li-Bi, Z., Yu-Jie, M., et al. (2004). Molecular epidemiology of enterovirus 71 infection in the Western Pacific Region. Pediatrics International, 46, 231–235.

    Article  Google Scholar 

  7. Shimizu, H., Utama, A., Yoshii, K. (1999). Enterovirus 71 from fatal and nonfatal cases of hand, foot and mouth disease epidemics in Malaysia, Japan and Taiwan in 1997–1998. Japanese Journal of Infectious Diseases, 52, 12–15.

    Google Scholar 

  8. Yan, J. J., Wang, J. R., Liu, C. C., Yang, H. B., Su, I. J. (2000). An outbreak of enterovirus 71 infection in Taiwan 1998: A comprehensive pathological, virological, and molecular study on a case of fulminant encephalitis. Journal of Clinical Virology, 17, 13–22.

    Article  MATH  Google Scholar 

  9. Lum, L. C. S., Wong, K. T., Lam, S. K., Chua, K. B., Goh, A. Y., Lim, W. L., et al. (1998). Fatal enterovirus 71 encephalomyelitis. Journal of Pediatrics, 133, 795–798.

    Article  Google Scholar 

  10. McMinn, P., Lindsay, K., Perera, D., Chan, H. M., Chan, K. P., Cardosa, M. J. (2001). Phylogenetic analysis of enterovirus 71 strains isolated during linked epidemics in Malaysia, Singapore, and Western Australia. Journal of Virology, 75, 7732–7738.

    Article  Google Scholar 

  11. Tsai, M. T., Cheng, Y. H., Liu, Y. N., Liao, N. C., Lu, W. W., Kung, S. H. (2009). Real-time monitoring of human enterovirus (HEV)-infected cells and anti-HEV 3 C protease potency by fluorescence resonance energy transfer. Antimicrobial Agents and Chemotherapy, 53, 748–755.

    Article  Google Scholar 

  12. Arita, M., Takebe, Y., Wakita, T., Shimizu, H. (2010). A bifunctional anti-enterovirus compound that inhibits replication and the early stage of enterovirus 71 infection. Journal of General Virology, 91, 2734–2744.

    Article  Google Scholar 

  13. Chan, W. C. W., & Nie, S. M. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281, 2016–2018.

    Article  Google Scholar 

  14. Parak, W. J., Pellegrino, T., Plank, C. (2005). Labelling of cells with quantum dots. Nanotechnology, 16, R9–R25.

    Article  Google Scholar 

  15. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–544.

    Article  Google Scholar 

  16. Shih, S. R., Tsai, K. N., Li, Y. S., Chueh, C. C., Chan, E. C. (2003). Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis. Journal of Medical Virology, 70, 119–125.

    Article  Google Scholar 

  17. Chen, Y. C., Yu, C. K., Wang, Y. F., Liu, C. C., Su, I. J., Lei, H. Y. (2004). A murine oral enterovirus 71 infection model with central nervous system involvement. Journal of General Virology, 85, 69–77.

    Article  Google Scholar 

  18. Bruchez, M. J., Moronne, M., Gin, P., Weiss, S., Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016.

    Article  Google Scholar 

  19. Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., Libchaber, A. (2002). In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 298, 1759–1762.

    Article  Google Scholar 

  20. Mulder, W. J. M., Koole, R., Brandwijk, R. J., Storm, G., Chin, P. T., Strijkers, G. J., et al. (2006). Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Letters, 6, 1–6.

    Article  Google Scholar 

  21. Pinand, F., King, D., Moore, H. P., Weiss, S. (2004). Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. Journal of the American Chemical Society, 126, 6115–6123.

    Article  Google Scholar 

  22. Zhelev, Z., Ohba, H., Bakalova, R. (2006). Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers. Journal of the American Chemical Society, 128, 6324–6325.

    Article  Google Scholar 

  23. Wang, C. H., Hsu, Y. S., Peng, C. A. (2008). Quantum dots encapsulated with amphiphilic alginate as bioprobe for fast screening anti-dengue virus agents. Biosensors and Bioelectronics, 24, 1018–1025.

    Google Scholar 

  24. Coelen, R. J., Jose, D. G., May, J. T. (1983). The effect of hexadimethrine bromide (polybrene) on the infection of the primate retroviruses SSV 1/SSAV 1 and BaEV. Archives of Virology, 75, 307–311.

    Article  Google Scholar 

  25. You, J. O., Liu, Y. S., Liu, Y. C., Joo, K. I., Peng, C. A. (2006). Incorporation of quantum dots on virus in polycationic solution. International Journal of Nanomedicine, 1, 59–64.

    Article  Google Scholar 

  26. Peng, C. A., Wang, C. H., Wang, W. L. (2010). Rapid antiviral assay using QD-tagged fish virus as imaging nanoprobe. Journal of Virological Methods, 169, 412–415.

    Article  Google Scholar 

  27. Weng, T. Y., Chen, L. C., Shyu, H. W., Chen, S. H., Wang, J. R., Yu, C. K., et al. (2005). Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antiviral Research, 67, 31–37.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Taiwan National Health Research Institutes (NHRI-EX98-9836EI) and partly by Michigan Tech Fund of Michigan Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-An Peng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peng, CA., Wang, CH. Anti-enteroviral Activity of Microalgal Extracts Probed by Bionanohybrids of Quantum Dots and Viruses. BioNanoSci. 1, 144–152 (2011). https://doi.org/10.1007/s12668-011-0019-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-011-0019-0

Keywords

  • Quantum dots
  • Enterovirus 71
  • Bionanohybrids
  • Amphiphilic alginate
  • Polybrene
  • Microalgal extracts