, 1:63 | Cite as

Surface Nanoengineering Inspired by Evolution

  • Thor Christian Hobæk
  • Kristian Greger Leinan
  • Hans Petter Leinaas
  • Christian ThaulowEmail author


Through evolution, nature has optimised structures and materials with a hierarchy from the macro- to the nanoscale. Biological materials are very sophisticated in the way they solve challenges associated with life. Some properties of commercial interest found in nature are self-cleaning, aerodynamic lift, anti-adhesion, water harvesting, water-floating and staying dry. Biomimetics, to learn from nature, has been used for centuries to create new innovative devices. With the use of “nanotools”, it is possible to design hierarchical surface structures with exceptional functional properties. In this paper, an overview of interesting surface properties with biomimetic potential, strategies for nanomanipulation of surfaces, potential industrial applications and the potential of using atomistic modelling to optimise surface structuring are discussed.


Biomimetics Bioinspired Nanotechnology Surfaces Superhydrophobicity Atomistic modelling 


  1. 1.
    Thompson, D. W. (1968). On growth and form (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  2. 2.
    Gordon, J. E. (1976). The new science of strong materials, or why you don't fall through the floor (2nd ed.). London: Pitman.Google Scholar
  3. 3.
    Buehler, M. J. (2010). Nanomaterials strength in numbers. Nature Nanotechnology, 5(3), 172–174.CrossRefGoogle Scholar
  4. 4.
    Buehler, M. J., & Yung, Y. C. (2009). Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Materials, 8(3), 175–188.CrossRefGoogle Scholar
  5. 5.
    Bhushan, B., Jung, Y. C., & Koch, K. (2009). Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 367(1894), 1631–1672.CrossRefGoogle Scholar
  6. 6.
    Buehler, M. J. (2010). Tu(r)ning weakness to strength. Nano Today, 5(5), 379–383.CrossRefGoogle Scholar
  7. 7.
    Jackson, A. P., Vincent, J. F. V., & Turner, R. M. (1988). The mechanical design of nacre. Proceedings of the Royal Society of London Series B-Biological Sciences, 234(1277), 415–440.CrossRefGoogle Scholar
  8. 8.
    Hiemenz, P. C., & Rajagopalan, R. (Eds.). (1997). Principles of colloid and surface chemistry (3rd ed.). Boca Raton, FL: CRC Press.Google Scholar
  9. 9.
    Speight, J. G., & Lange, N. A. (Eds.). (2005). Lange's handbook of chemistry (16th ed.). Maidenhead, UK: McGraw-Hill Professional.Google Scholar
  10. 10.
    Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28(8), 988–994.CrossRefGoogle Scholar
  11. 11.
    Cassie, A. B. D. (1948). Contact angles. Discussions of the Faraday Society, 3, 11–16.CrossRefGoogle Scholar
  12. 12.
    Patankar, N. A. (2004). Transition between superhydrophobic states on rough surfaces. Langmuir, 20(17), 7097–7102.CrossRefGoogle Scholar
  13. 13.
    Nosonovsky, M., & Bhushan, B. (2005). Roughness optimization for biomimetic superhydrophobic surfaces. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 11(7), 535–549.Google Scholar
  14. 14.
    Bormashenko, E. (2010). Wetting transitions on biomimetic surfaces. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 368(1929), 4695–4711.CrossRefGoogle Scholar
  15. 15.
    Whyman, G., Bormashenko, E., & Stein, T. (2008). The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chemical Physics Letters, 450(4–6), 355–359.CrossRefGoogle Scholar
  16. 16.
    Roach, P., Shirtcliffe, N. J., & Newton, M. I. (2008). Progess in superhydrophobic surface development. Soft Matter, 4(2), 224–240.CrossRefGoogle Scholar
  17. 17.
    Shirtcliffe, N. J., et al. (2005). Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 25, 3135–3137.CrossRefGoogle Scholar
  18. 18.
    Öner, D., & McCarthy, T. J. (2000). Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir, 16(20), 7777–7782.CrossRefGoogle Scholar
  19. 19.
    Bhushan, B., Nosonovsky, M., & Jung, Y. C. (2007). Towards optimization of patterned superhydrophobic surfaces. Journal of the Royal Society, Interface, 4(15), 643–648.CrossRefGoogle Scholar
  20. 20.
    Quere, D. (2005). Non-sticking drops. Reports on Progress in Physics, 68(11), 2495–2532.CrossRefGoogle Scholar
  21. 21.
    Lv, C. J., et al. (2010). Sliding of water droplets on microstructured hydrophobic surfaces. Langmuir, 26(11), 8704–8708.CrossRefGoogle Scholar
  22. 22.
    Dettre, R. H., & Johnson, R. E. (1964). Contact angle hysteresis. In Contact angle, wettability, and adhesion (pp. 136–144). Washington DC: American Chemical Society.CrossRefGoogle Scholar
  23. 23.
    Zheng, Q. S., et al. (2010). Small is beautiful, and dry. Science China-Physics Mechanics & Astronomy, 53(12), 2245–2259.CrossRefGoogle Scholar
  24. 24.
    Amirfazli, A., & Neumann, A. W. (2004). Status of the three-phase line tension. Advances in Colloid and Interface Science, 110(3), 121–141.CrossRefGoogle Scholar
  25. 25.
    Parker, A. R., & Lawrence, C. R. (2001). Water capture by a desert beetle. Nature, 414(6859), 33–34.CrossRefGoogle Scholar
  26. 26.
    Gao, X. F., & Jiang, L. (2004). Water-repellent legs of water striders. Nature, 432(7013), 36–36.CrossRefGoogle Scholar
  27. 27.
    Feng, X. Q., et al. (2007). Superior water repellency of water strider legs with hierarchical structures: Experiments and analysis. Langmuir, 23(9), 4892–4896.CrossRefGoogle Scholar
  28. 28.
    Cernan, Z., Striffler, B. F., & Barthlott, W. (2009). Dry in the water: The superhydrophobic water fern Salvinia—A model for biomimetic surfaces. In S. N. Gorb (Ed.), Functional surfaces in biology: little structures with big effects. New York: Springer.Google Scholar
  29. 29.
    Barthlott, W., et al. (2010). The Salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water. Advanced Materials, 22(21), 2325–2328.CrossRefGoogle Scholar
  30. 30.
    Koch, K., Bhushan, B., & Barthlott, W. (2010). Multifunctional plant surfaces and smart materials. In B. Bhushan (Ed.), Springer Handbook of Nanotechnology (pp. 1399–1436). New York: Springer.CrossRefGoogle Scholar
  31. 31.
    Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1–8.CrossRefGoogle Scholar
  32. 32.
    Neinhuis, C., & Barthlott, W. (1997). Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79(6), 667–677.CrossRefGoogle Scholar
  33. 33.
    Koch, K., Bhushan, B., & Barthlott, W. (2009). Multifunctional surface structures of plants: An inspiration for biomimetics. Progress in Materials Science, 54(2), 137–178.CrossRefGoogle Scholar
  34. 34.
    Brewer, C. A., Smith, W. K., & Vogelmann, T. C. (1991). Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant, Cell & Environment, 14(9), 955–962.CrossRefGoogle Scholar
  35. 35.
    Wagner, P., et al. (2003). Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. Journal of Experimental Botany, 54(385), 1295–1303.CrossRefGoogle Scholar
  36. 36.
    Marmur, A. (2004). The lotus effect: Superhydrophobicity and metastability. Langmuir, 20(9), 3517–3519.CrossRefGoogle Scholar
  37. 37.
    Gao, L. C., & McCarthy, T. J. (2006). The "lotus effect" explained: Two reasons why two length scales of topography are important. Langmuir, 22(7), 2966–2967.CrossRefGoogle Scholar
  38. 38.
    Zhang, L., et al. (2006). Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography. Langmuir, 22(20), 8576–8580.CrossRefGoogle Scholar
  39. 39.
    Yu, Y., Zhao, Z. H., & Zheng, Q. S. (2007). Mechanical and superhydrophobic stabilities of two-scale surfacial structure of lotus leaves. Langmuir, 23(15), 8212–8216.CrossRefGoogle Scholar
  40. 40.
    Chow, T. S. (2007). Nanoscale surface roughness and particle adhesion on structured substrates. Nanotechnology, 18(11), 115713.CrossRefGoogle Scholar
  41. 41.
    Bormashenko, E., et al. (2007). Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie–Baxter wetting hypothesis and Cassie–Wenzel capillarity-induced wetting transition. Journal of Colloid and Interface Science, 311(1), 212–216.CrossRefGoogle Scholar
  42. 42.
    Gremillet, D., et al. (2005). Unusual feather structure allows partial plumage wettability in diving great cormorants Phalacrocorax carbo. Journal of Avian Biology, 36(1), 57–63.CrossRefGoogle Scholar
  43. 43.
    Feng, L., et al. (2008). Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 24(8), 4114–4119.CrossRefGoogle Scholar
  44. 44.
    Bormashenko, E., et al. (2006). Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir, 22(24), 9982–9985.CrossRefGoogle Scholar
  45. 45.
    Herminghaus, S. (2000). Roughness-induced non-wetting. Europhysics Letters, 52(2), 165–170.CrossRefGoogle Scholar
  46. 46.
    Bormashenko, E., et al. (2009). "Petal Effect" on surfaces based on lycopodium: High-stick surfaces demonstrating high apparent contact angles. Journal of Physical Chemistry C, 113(14), 5568–5572.CrossRefGoogle Scholar
  47. 47.
    Leinaas, H. P., Slabber, S., & Chown, S. L. (2009). Effects of thermal acclimation on water loss rate and tolerance in the collembolan Pogonognathellus flavescens. Physiological Entomology, 34, 325–332.CrossRefGoogle Scholar
  48. 48.
    Leinaas, H. P., & Hertzberg, K. (1998). Drought stress as a mortality factor in two pairs of sympatricspecies of Colembola at Spitsbergen, Svalbard. Polar Biology, 19, 302–306.CrossRefGoogle Scholar
  49. 49.
    Quirk, M., & Serda, J. (2001). Semiconductor manufacturing technology. Columbus, OH: Prentice Hall.Google Scholar
  50. 50.
    Quéré, D. (2005). Non-sticking drops. Reports on Progress in Physics, 68(11), 2495–2532.CrossRefGoogle Scholar
  51. 51.
    Wong, T. S., Huang, A. P. H., & Ho, C. M. (2009). Wetting behaviors of individual nanostructures. Langmuir, 25(12), 6599–6603.CrossRefGoogle Scholar
  52. 52.
    Zheng, Q. S., Yu, Y., & Zhao, Z. H. (2005). Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir, 21(26), 12207–12212.CrossRefGoogle Scholar
  53. 53.
    Yoshimitsu, Z., et al. (2002). Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir, 18(15), 5818–5822.CrossRefGoogle Scholar
  54. 54.
    Nosonovsky, M. (2007). Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir, 23(6), 3157–3161.CrossRefGoogle Scholar
  55. 55.
    Sun, T. L., et al. (2005). Bioinspired surfaces with special wettability. Accounts of Chemical Research, 38(8), 644–652.CrossRefGoogle Scholar
  56. 56.
    Bongaerts, J. H. H., Fourtouni, K., & Stokes, J. R. (2007). Soft-tribology: Lubrication in a compliant PDMS-PDMS contact. Tribology International, 40(10–12), 1531–1542.CrossRefGoogle Scholar
  57. 57.
    Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1995). Imprint of sub-25 Nm vias and trenches in polymers. Applied Physics Letters, 67(21), 3114–3116.CrossRefGoogle Scholar
  58. 58.
    Austin, M. D., et al. (2004). Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters, 84(26), 5299–5301.CrossRefGoogle Scholar
  59. 59.
    Schift, H., & Kristensen, A. (2010). Nanoimprint lithography—Patterning of resists using molding. In Springer Handbook of Nanotechnology (pp. 273–312). New York: Springer.Google Scholar
  60. 60.
    Mumm, F., van Helvoort, A. T. J., & Sikorski, P. (2009). Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems. ACS Nano, 3(9), 2647–2652.CrossRefGoogle Scholar
  61. 61.
    Lee, Y., Ju, K. Y., & Lee, J. K. (2010). Stable biomimetic superhydrophobic surfaces fabricated by polymer replication method from hierarchically structured surfaces of Al templates. Langmuir, 26(17), 14103–14110.CrossRefGoogle Scholar
  62. 62.
    Baddour, C. E., et al. (2009). A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst. Carbon, 47(1), 313–318.CrossRefGoogle Scholar
  63. 63.
    Kim, B., et al. (2010). Synthesis of vertically-aligned carbon nanotubes on stainless steel by water-assisted chemical vapor deposition and characterization of their electrochemical properties. Synthetic Metals, 160(7–8), 584–587.CrossRefGoogle Scholar
  64. 64.
    Masarapu, C., & Wei, B. Q. (2007). Direct growth of aligned multiwalled carbon nanotubes on treated stainless steel substrates. Langmuir, 23(17), 9046–9049.CrossRefGoogle Scholar
  65. 65.
    Ishigami, N., et al. (2008). Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire. Journal of the American Chemical Society, 130(30), 9918–9924.CrossRefGoogle Scholar
  66. 66.
    Jung, Y. C., & Bhushan, B. (2009). Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag. ACS Nano, 3(12), 4155–4163.CrossRefGoogle Scholar
  67. 67.
    Shirtcliffe, N. J., et al. (2003). Intrinsically superhydrophobic organosilica sol-gel foams. Langmuir, 19(14), 5626–5631.CrossRefGoogle Scholar
  68. 68.
    Tsai, P. S., Yang, Y. M., & Lee, Y. L. (2006). Fabrication of hydrophobic surfaces by coupling of Langmuir–Blodgett deposition and a self-assembled monolayer. Langmuir, 22(13), 5660–5665.CrossRefGoogle Scholar
  69. 69.
    Zhu, L. Q., & Jin, Y. (2007). A novel method to fabricate water-soluble hydrophobic agent and super-hydrophobic film on pretreated metals. Applied Surface Science, 253(7), 3432–3439.CrossRefGoogle Scholar
  70. 70.
    Li, Y., et al. (2007). Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays. Langmuir, 23(4), 2169–2174.CrossRefGoogle Scholar
  71. 71.
    Chen, C. H., et al. (2007). Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Applied Physics Letters, 90(17), 173108.CrossRefGoogle Scholar
  72. 72.
    Sto Corp., StoCoat Lotusan. Available from: Accessed on: 13 Jan 2011
  73. 73.
    Xiong, J., et al. (2010). Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. Journal of Colloid and Interface Science, 350(1), 344–347.CrossRefGoogle Scholar
  74. 74.
    Mishchenko, L., et al. (2010). Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano, 4(12), 7699–7707.CrossRefGoogle Scholar
  75. 75.
    Max, M. D. (2003). Natural gas hydrate in oceanic and permafrost environments. Boston, MA: Kluwer.Google Scholar
  76. 76.
    Sugimoto, S., Matsuda, Y., & Mori, H. (2009). Carbon nanotube formation directly on the surface of stainless steel materials by plasma-assisted chemical vapor deposition. Journal of Plasma and Fusion Research, 8, 522–525.Google Scholar
  77. 77.
    Liu, T., et al. (2007). Super-hydrophobic surfaces improve corrosion resistance of copper in seawater. Electrochimica Acta, 52(11), 3709–3713.CrossRefGoogle Scholar
  78. 78.
    Eyring, V., et al. (2005). Emissions from international shipping: 1. The last 50 years. Journal of Geophysical Research-Atmospheres, 110(D17), D17305.CrossRefGoogle Scholar
  79. 79.
    Bhushan, B., Wang, Y., & Maali, A. (2009). Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy. Langmuir, 25(14), 8117–8121.CrossRefGoogle Scholar
  80. 80.
    Dean, B., & Bhushan, B. (2010). Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 368(1929), 4775–4806.CrossRefGoogle Scholar
  81. 81.
    Bechert, D. W., et al. (1997). Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics, 338, 59–87.CrossRefGoogle Scholar
  82. 82.
    Matthews, J. N. A. (2008). Low-drag suit propels swimmers. Physics Today, 61(8), 32–33.CrossRefGoogle Scholar
  83. 83.
    Batchelor, G. K. (1970). An introduction to fluid dynamics. Cambridge: Cambridge University Press.Google Scholar
  84. 84.
    Wang, Y. L., Bhushan, B., & Maali, A. (2009). Atomic force microscopy measurement of boundary slip on hydrophilic, hydrophobic, and superhydrophobic surfaces. Journal of Vacuum Science & Technology A, 27(4), 754–760.CrossRefGoogle Scholar
  85. 85.
    Zhai, L., et al. (2006). Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib Desert beetle. Nano Letters, 6(6), 1213–1217.CrossRefGoogle Scholar
  86. 86.
    Woodward, I. S., et al. (2006). Micropatterning of plasma fluorinated super-hydrophobic surfaces. Plasma Chemistry and Plasma Processing, 26(5), 507–516.CrossRefGoogle Scholar
  87. 87.
    Garrod, R. P., et al. (2007). Mimicking a stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir, 23(2), 689–693.CrossRefGoogle Scholar
  88. 88.
    Guo, Z., Liu, W., & Su, B.-L. (2011). Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science, 353, 335–355.CrossRefGoogle Scholar
  89. 89.
    Parthangal, P. M., Cavicchi, R. E., & Zachariah, M. R. (2007). A generic process of growing aligned carbon nanotube arrays on metal and metal alloys. Nanotechnology, 18, 185605.CrossRefGoogle Scholar
  90. 90.
    Garcia, A. P., & Buehler, M. J. (2010). Bioinspired nanoporous silicon provides great toughness at great deformability. Computational Materials Science, 48, 303–309.CrossRefGoogle Scholar
  91. 91.
    Garcia, A.P., D. Sen, and M.J. Buehler, Hierarchical silica nanostructures inspired by diatom algae yield superior deformability, toughness and strength. Metallurgical and Materials Transactions A, 2011 (in press).Google Scholar
  92. 92.
    Sen, D., et al. (2010). Atomistic study of crack-tip cleavage to dislocation emission transition in silicon single crystals. Physical Review Letters, 104, 235502.CrossRefGoogle Scholar
  93. 93.
    Thaulow, C., Sen, D., & Buehler, M. J. (2011). Atomistic study of the effect of crack tip ledges on the nucleation of dislocations in silicon single crystals at elevated temperature. Materials Science & Engineering A, 528, 4357–4364.CrossRefGoogle Scholar
  94. 94.
    Thaulow, C., et al. (2011). Crack tip opening displacement in atomistic modeling of fracture of silicon. Computational Materials Science, 50, 2621–2627.CrossRefGoogle Scholar
  95. 95.
    Sen, D., & Buehler, M. J. (2010). Atomistically-informed mesoscale model of deformation and failure of bioinspired hierarchical silica nanocomposites. International Journal of Applied Mechanics, 2(4), 699.CrossRefGoogle Scholar
  96. 96.
    Leinaas, H. P., & Fjellberg, A. (1985). Habitat structure and life-history strategies of 2 partly sympatric and closely related, lichen feeding collembolan species. Oikos, 44, 448–458.CrossRefGoogle Scholar
  97. 97.
    Buehler, M. J., & Xu, Z. (2010). Mind the helical crack. Nature, 464(4), 42–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Thor Christian Hobæk
    • 1
  • Kristian Greger Leinan
    • 1
  • Hans Petter Leinaas
    • 2
  • Christian Thaulow
    • 1
    Email author
  1. 1.Department of Engineering Design and MaterialsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of BiologyUniversity of OsloOsloNorway

Personalised recommendations