Advertisement

BioNanoScience

, Volume 1, Issue 1–2, pp 14–23 | Cite as

Dynamic Failure of a Lamina Meshwork in Cell Nuclei under Extreme Mechanical Deformation

  • Zhao Qin
  • Markus J. Buehler
Article

Abstract

The nuclear lamina is a structural protein meshwork at the inner nuclear membrane. It confers mechanical strength to the cell’s nucleus and also sustains the overall structural integrity of the cell. The rupture of nuclear lamina is involved in many physiologically extreme conditions, such as cell division, genetic disease, and injury. Yet, its rupture mechanisms and processes are largely unknown and failure models commonly used for engineering materials cannot be directly applied due to the complex hierarchical structure. Here, we use a multiscale modeling technique to investigate the dynamic failure of the nuclear lamina meshwork from the bottom up. We find that flaws or cracks in the nuclear lamina act as seeds for catastrophic failure that propagate rapidly upon very large deformation. Fracture occurs via crack propagation at intersonic speeds, and greater than the Rayleigh-wave speed predicted as a limit by classical fracture theory but smaller than the longitudinal wave speed. Our analysis shows that nanoscale secondary structural changes in protein filaments such as the alpha–beta transition and intermolecular sliding explain this macroscale phenomenon. Based on a simple model, we discover that the crack propagation speed is governed by the square root of the ratio of the tangent material moduli in (E x ) and perpendicular (E y ) to the crack propagation direction, v ~ √(E x /E y ) where the relative levels of applied strains in the x- and y-direction control the crack speed.

Keywords

Nuclear lamina Intermediate filament meshwork Biological material Multi-scale modeling Failure Materiomics 

References

  1. 1.
    Herrmann, H., Bar, H., Kreplak, L., Strelkov, S. V., Aebi, U. (2007). Intermediate filaments: from cell architecture to nanomechanics. Nature Reviews Molecular Cell Biology, 8(7), 562–573.CrossRefGoogle Scholar
  2. 2.
    Aebi, U., Cohn, J., Buhle, L., Gerace, L. (1986). The nuclear lamina is a meshwork of intermediate-type filaments. Nature, 323(6088), 560–564.CrossRefGoogle Scholar
  3. 3.
    Ishikawa, H., Bischoff, R., Holtzer, H. (1968). Mitosis and intermediate-sized filaments in developing skeletal muscle. The Journal of Cell Biology, 38(3), 538–555.CrossRefGoogle Scholar
  4. 4.
    Chang, L., Shav-Tal, Y., Trcek, T., Singer, R. H., Goldman, R. D. (2006). Assembling an intermediate filament network by dynamic cotranslation. The Journal of Cell Biology, 172(5), 747–758.CrossRefGoogle Scholar
  5. 5.
    Omary, M. B., Coulombe, P. A., McLean, W. H. I. (2004). Mechanisms of disease: intermediate filament proteins and their associated diseases. The New England Journal of Medicine, 351(20), 2087–2100.CrossRefGoogle Scholar
  6. 6.
    van der Kooi, A. J., Bonne, G., Eymard, B., Duboc, D., Talim, B., Van der Valk, M., et al. (2002). Lamin A/C mutations with lipodystrophy, cardiac abnormalities, and muscular dystrophy. Neurology, 59(4), 620–623.Google Scholar
  7. 7.
    Dahl, K. N., Scaffidi, P., Islam, M. F., Yodh, A. G., Wilson, K. L., Misteli, T. (2006). Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proceedings Of The National Academy Of Sciences Of The United States Of America, 103(27), 10271–10276.CrossRefGoogle Scholar
  8. 8.
    Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., et al. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature, 423(6937), 293–298.CrossRefGoogle Scholar
  9. 9.
    Djaczenk, W., Starzyk, H., Rzucidlo, Z. (1973). X-ray-irradiation induced changes of nuclear membrane of Kirkman-Robbins tumor-cells. Experientia, 29(1), 83–84.CrossRefGoogle Scholar
  10. 10.
    Strelkov, S. V., Schumacher, J., Burkhard, P., Aebi, U., Herrmann, H. (2004). Crystal structure of the human lamin a coil 2B dimer: implications for the head-to-tail association of nuclear lamins. Journal Of Molecular Biology, 343(4), 1067–1080.CrossRefGoogle Scholar
  11. 11.
    Buehler, M. J., & Yung, Y. C. (2009). Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Materials, 8(3), 175–188.CrossRefGoogle Scholar
  12. 12.
    Scaffidi, P., & Misteli, T. (2006). Lamin A-dependent nuclear defects in human aging. Science, 312(5776), 1059–1063.CrossRefGoogle Scholar
  13. 13.
    Herrmann, H., & Aebi, U. (1998). Intermediate filament assembly: fibrillogenesis is driven by decisive dimer-dimer interactions. Current Opinion in Structural Biology, 8(2), 177–185.CrossRefGoogle Scholar
  14. 14.
    Carpinteri, A., & Pugno, N. M. (2008). Mechanics of hierarchical materials. International Journal of Fracture, 150(1–2), 221–226.zbMATHCrossRefGoogle Scholar
  15. 15.
    Ackbarow, T., Sen, D., Thaulow, C., Buehler, M. J. (2009). Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS ONE, 4(6), e6015.CrossRefGoogle Scholar
  16. 16.
    Qin Z, Buehler MJ (2011) Flaw tolerance of nuclear intermediate filament lamina under extreme mechanical deformation. ACS Nano. doi: 10.1021/nn200107u.
  17. 17.
    Petersan, P. J., Deegan, R. D., Marder, M., Swinney, H. L. (2004). Cracks in rubber under tension exceed the shear wave speed. Physical Review Letters, 93(1), 015504.CrossRefGoogle Scholar
  18. 18.
    Sen, D., Thaulow, C., Schieffer, S. V., Cohen, A., Buehler, M. J. (2010). Atomistic study of crack-tip cleavage to dislocation emission transition in silicon single crystals. Physical Review Letters, 104(23), 235502.CrossRefGoogle Scholar
  19. 19.
    Qin, Z., Kreplak, L., Buehler, M. J. (2009). Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS ONE, 4(10), e7294.CrossRefGoogle Scholar
  20. 20.
    Qin, Z., & Buehler, M. J. (2010). Molecular dynamics simulation of the alpha-helix to beta-sheet transition in coiled protein filaments: evidence for a critical filament length scale. Physical Review Letters, 104(19), 198304.CrossRefGoogle Scholar
  21. 21.
    Goldberg, M. W., Huttenlauch, I., Hutchison, C. J., Stick, R. (2008). Filaments made from A- and B-type lamins differ in structure and organization. Journal of Cell Science, 121(2), 215–225.CrossRefGoogle Scholar
  22. 22.
    Dahl, K. N., Kahn, S. M., Wilson, K. L., Discher, D. E. (2004). The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. Journal of Cell Science, 117(20), 4779–4786.CrossRefGoogle Scholar
  23. 23.
    Bertaud, J., Qin, Z., Buehler, M. J. (2010). Intermediate filament-deficient cells are mechanically softer at large deformation: a multi-scale simulation study. Acta Biomaterialia, 6(7), 2457–2466.CrossRefGoogle Scholar
  24. 24.
    Buehler, M. J., & Gao, H. J. (2006). Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature, 439(7074), 307–310.CrossRefGoogle Scholar
  25. 25.
    Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge: University Press.zbMATHGoogle Scholar
  26. 26.
    Jennings, B. R., & Parslow, K. (1988). Particle-size measurement—the equivalent spherical diameter. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 419(1856), 137–149.CrossRefGoogle Scholar
  27. 27.
    Plimpton, S. (1995). Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117(1), 1–19.zbMATHCrossRefGoogle Scholar
  28. 28.
    Humphrey, W., Dalke, A., Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.CrossRefGoogle Scholar
  29. 29.
    Buehler, M. J., Abraham, F. F., Gao, H. J. (2003). Hyperelasticity governs dynamic fracture at a critical length scale. Nature, 426(6963), 141–146.CrossRefGoogle Scholar
  30. 30.
    Baumberger, T., Caroli, C., Martina, D. (2006). Solvent control of crack dynamics in a reversible hydrogel. Nature Materials, 5(7), 552–555.CrossRefGoogle Scholar
  31. 31.
    Pugno, N. M. (2006). Dynamic quantized fracture mechanics. International Journal of Fracture, 140(1–4), 159–168.zbMATHCrossRefGoogle Scholar
  32. 32.
    Pugno, N. M., & Ruoff, R. S. (2004). Quantized fracture mechanics. Philosophical Magazine, 84(27), 2829–2845.CrossRefGoogle Scholar
  33. 33.
    Wegst, U. G. K., & Ashby, M. F. (2004). The mechanical efficiency of natural materials. Philosophical Magazine, 84(21), 2167–2181.CrossRefGoogle Scholar
  34. 34.
    Espinosa, H. D., Rim, J. E., Barthelat, F., Buehler, M. J. (2009). Merger of structure and material in nacre and bone—perspectives on de novo biomimetic materials. Progress in Materials Science, 54(8), 1059–1100.CrossRefGoogle Scholar
  35. 35.
    Nukala, P. K., & Simunovic, S. (2005). Statistical physics models for nacre fracture simulation. Phys Rev E Stat Nonlin Soft Matter Phys, 72(4 Pt 1), 041919.CrossRefGoogle Scholar
  36. 36.
    Pugno, N. M. (2006). Mimicking nacre with super-nanotubes for producing optimized super-composites. Nanotechnology, 17(21), 5480–5484.CrossRefGoogle Scholar
  37. 37.
    Qin, Z., Feng, X. Q., Zou, J., Yin, Y. J., Yu, S. W. (2007). Superior flexibility of super carbon nanotubes: molecular dynamics simulations. Applied Physics Letters, 91(4), 043108.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations