Skip to main content
Log in

Climatic sensorless maximum power point tracking based on adaptive neuro-extremum seeking control technique in PV generation systems

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

For several decades renewable energies such as solar energy have been increasing popularity in autonomous power generation. One of the major problems found in solar generation systems is the maximum power transfer from the photovoltaic panel (PV) to the load. Thus, various maximum power point tracking (MPPT) techniques have been developed in the literature to deal with inevitable variations of irradiation, temperature and shading. This paper presents a new control strategy based on the combination of an extremum seeking control (ESC) technique with a nonlinear neuro-adaptive method to achieve the Maximum Power Point Tracking (MPPT) in photovoltaic systems. In this new method, a RBF-neuro observer is used to estimate unknown PV system parameters (i.e. irradiation and temperature) and derive an optimal voltage signal. Then this signal is fed into a modified ESC to ensure a satisfactory MPPT, despite the varying atmospheric conditions. A detailed stability of the proposed combined approach is analysed using root locus theories. The effectiveness and the capability of the proposed MPPT approach are assessed, through numerical simulations using MATLAB/Simulink software, and compared to those of the modified ESC without the adaptive neuronal observer and the P &O algorithm under varying operating conditions. The proposed controller features the smallest maximum power tracking RMSE (2.4672) and highest power efficiency (0.98) while the P &O method exhibits the highest maximum power tracking RMSE (3.5877) and smallest power efficiency (0.953). A real time implementation is also carried out using Arduino Mega board to demonstrate the feasibility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Le Feuvre, M., Wieczorek, M.A.: Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus 214, 1–20 (2011)

    Article  Google Scholar 

  2. Yin, C., Chen, Y.Q., Stark, B., Zhong, S.M.: Extremum seeking control with fractional-order switching technique design for maximum power point tracking in photovoltaic systems. In: 54th IEEE Conference on Decision and Control (CDC), pp. 5629–5634 (2015)

  3. Parra, D., Gillott, M., Norman, S.A., Walker, G.S.: Optimum community energy storage system for PV energy time-shift. Appl. Energy 137, 576–587 (2015)

    Article  Google Scholar 

  4. Manna, S., Akella, A.K., Singh, D.K.: Implementation of a novel robust model reference adaptive controller-based MPPT for stand-alone and grid-connected photovoltaic system. Energy Sources Part A: Recovery, Utili. Environ. Eff. 45, 1321–1345 (2023)

    Article  Google Scholar 

  5. de la Rosa Romo, D., Loera-Palomo, R., Rivero, M.: Averaged current mode control for maximum power point tracking in high-gain photovoltaic applications. J. Power Electron. 20, 1650–1661 (2020)

    Article  Google Scholar 

  6. Li, G., Wang, H.A.: Novel stand-alone PV generation system based on variable step size INC MPPT and SVPWM control. In: Proceedings of the IEEE 6th International Power Electronics and Motion Control Conference, IEEE-IPEMC, vol. 9, pp. 2155–2160 (2009)

  7. Reisi, A.R., Moradi, M.H., Jamasb, S.: Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review. Renew. Sustain. Energy Rev. 19, 433–43 (2013)

    Article  Google Scholar 

  8. Rajabi, M.S., Hassan Hosseini, M.: Maximum power point tracking in photovoltaic systems under diferent operational conditions by using ZA-INC algorithm. SN Appl. Sci. 2 (2019)

  9. Kamarzaman, N.A., Tan, C.W.: A comprehensive review of maximum power point tracking algorithms for photovoltaic systems. Renew. Sustain. Energy 37, 98–585 (2013)

    Google Scholar 

  10. Liu, F., Kang, Y., Zhang, Y., Duan, S.: Comparison of P & O and hill climbing MPPT methods for grid-connected PV converter. In: Proceedings of the 3rd IEEE Conference on Industrial Electronics and Applications, (ICIEA 2008), pp. 804–807 (2008)

  11. Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: A technique for improving P & O MPPT performances of double-stage grid-connected photovoltaic systems. IEEE Trans. Ind. Electron. 56, 4473–4482 (2009)

    Article  Google Scholar 

  12. Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Ind. Electron. 20(4), 73–963 (2005)

    Google Scholar 

  13. Rezaei, M.M., Asadi, H.: Modified perturb-and-observe-based maximum power point tracking technique for photovoltaic energy conversion systems. J. Control Autom. Electr. Syst. 30, 822–831 (2005)

    Article  Google Scholar 

  14. Mutoh, N., Matuo, V., Okada, K., Sakai, M.: Prediction-databased maximum-power-pointtracking method for photovoltaic power generation systems. In: Proceedings of the IEEE 33rd Annu. Power Electron. Spec. Conference, pp. 1489–1494 (2002)

  15. Yuvarajan, S., Xuc, S.: Photo-voltaic power converter with a simple maximum-powerpoint-tracker. In: Proceedings of the International Symp, Circuits Syst pp. III–399–III-402 (2003)

  16. Kobayashi, K., Matsuo, H., Sekine, Y.: A novel optimum operating point tracker of the solar cell power supply system. In: Proceedings of the 35th Annu. IEEE Power Electron. Spec. Conference, pp. 2147–2151 (2004)

  17. Bekker, B., Beukes, H.J.: Finding an optimal PV panel maximum power point tracking method. In: Proceedings of the 7th AFRICON Conference Africa, pp. 1125–1129 (2004)

  18. Hiyama, T., Kouzuma, S., Imakubo, T.: Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Trans. Energy Convers. 10(2), 360–367 (1995)

    Article  Google Scholar 

  19. Won, C.Y., Kim, D.H., Kim, S.C., Kim, W.S., Kim, H.S.: A new maximum power point tracker of photovoltaic arrays using fuzzy controller. In: Proceedings of the 25th Annu. IEEE Power Electron. Spec. Conference, pp. 396–403 (1994)

  20. Larbes, C., Cheikh, S., Obeidi, T., Zerguerras, A.: Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renew. Energy 34(10), 2093–100 (2009)

    Article  Google Scholar 

  21. Heydari-doostabad, H., Keypour, R., Khalghani, M.R., Khooban, M.H.: A new approach in mppt for photovoltaic array based on extremum seeking control under uniform and non-uniform irradiances. Solar Energy 94, 28–36 (2013)

    Article  Google Scholar 

  22. Mohammed, S.S., Devaraj, D., Ahamed, T.I.: A novel hybrid maximum power point tracking technique using Perturb & Observe algorithm and learning automata for solar PV system. Energy 112, 1096–106 (2016)

    Article  Google Scholar 

  23. Belhachat, F., Larbes, C.: A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions. Renew. Sustain. Energy Rev. 92, 513–553 (2018)

    Article  Google Scholar 

  24. Krstic, M.: Performance improvement and limitations in extremum seeking control. Syst. Control Lett. 39(5), 313–326 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Malek, H., Chen, Y.: A single-stage three-phase grid connected photovoltaic system with fractional order MPPT. Proceedings of the Applied Power Electronics Conference and Exposition, 2014, pp. 1793–1798, IEEE (2014)

  26. Tchouani Njomo, A.F., Kenne, G., Douanla, R.M., Sonfack, L.L.: A modified ESC algorithm for MPPT applied to a photovoltaic system under varying environmental conditions. Int. J. Photoenergy 2020 (2020)

  27. Giraud, F., Salameh, Z.M.: Analysis of the effects of a passing cloud on a grid-interactive photovoltaic system with battery storage using neural networks. IEEE Trans. Energy Convers. 14(4), 1572–1577 (1999)

    Article  Google Scholar 

  28. Mathew, A., Selvakumar, A.I.: MPPT based stand-alone water pumping system. In: Int. Conf. on Computer, Communication and Electrical Technology (ICCCET), pp. 455–460 (2011)

  29. Veerachary, M., Senjyu, T., Uezato, K.: Neural-network-based maximum-powerpoint tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Trans. Ind. Electron. 50(4), 749–758 (2003)

    Article  Google Scholar 

  30. Bendib, B., Krim, F., Belmili, H., Almi, M.F., Bolouma, S.: An intelligent MPPT approach based on neural-network voltage estimator and fuzzy controller, applied to a stand-alone PV system. In: IEEE 23rd Int. Symp. on Industrial Electronics (ISIE), pp. 404–409 (2014)

  31. Baek, J.W., Ko, J.S., Choi, J.-S., Kang, S.J., Chung, D.H.: Maximum power point tracking control of photovoltaic system using neural network. In: Int. Conf. on Electrical Machines and Systems (ICEMS), pp. 638–643 (2010)

  32. Ko, J.S., Jung, B.J., Park, K.T., Choi, C.H., Chung, D.H.: Maximum power point tracking control of PV system for DC motors drive with neural network. In: Int. Conf. on Smart Manufacturing Application. ICSMA, pp. 514–519 (2008)

  33. Al-Amoudi, A., Zhang, L.: Application of radial basis function networks for solar-array modelling and maximum power-point prediction. IEE Proc. Gener. Transm. Distrib. 147(5), 310–316 (2000)

    Article  Google Scholar 

  34. Pachauri, R.K. Chauhan, Y.K.: Hydrogen generation/pressure enhancement using FC and ANN based MPPT assisted PV system. In: Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH), pp. 427–432 (2014)

  35. El Fadil, H., Giri, F.: Climatic sensor less maximum power point tracking in pv generation systems. Control Eng. Practice 19, 513–521 (2011)

    Article  Google Scholar 

  36. Tchouani Njomo, A.F., Sonfack, L.L., Douanla, R.M., Kenne, G.: Nonlinear neuro-adaptive control for MPPT applied to photovoltaic systems. J. Control Autom. Electr. Syst. (2021)

  37. Lasnier, F., Ang, T.G.: Photovoltaic Engineering Handbook. IOP Publishing Ltd. (1980) ISBN 0-85274-311-4

  38. Moura, S.J., Chang, Y.A.: Lyapunov-based switched extremum seeking for photovoltaic power maximization. Control Eng. Pract. 21, 971–80 (2013)

    Article  Google Scholar 

  39. Manna, S., Akella, A.K., Singh, D.K.: Novel Lyapunov-based rapid and ripple-free MPPT using a robust model reference adaptive controller for solar PV system. Protection Control Modern Power Syst. (2023). https://doi.org/10.1186/s41601-023-00288-9

    Article  Google Scholar 

  40. Manna, S., Singh, D.K., Akella, A.K., Kotb, H., AboRas, K.M., Zawbaa, H.M., Kamel, S.: Design and implementation of a new adaptive MPPT controller for solar PV systems. Energy Reports 1818-1829 (2023) ISSN 2352-4847. https://doi.org/10.1016/j.egyr.2022.12.152.

  41. Manna, S., Singh, D.K., Akella, A.K., Abdelaziz, A.Y., Prasad, M.S.M., Singh, D.K., Akella, A.K., Kumar, A., Kotb, H., Abdelaziz, A.Y., Miska, P.: A novel robust model reference adaptive MPPT controller for photovoltaic systems. Scientia Iranica 1818–1829 (2023) ISSN 2352-4847. https://doi.org/10.24200/sci.2022.59553.6312.

  42. Ahmed-Ali, T., Kenne, G., Lamnabhi-Lagarrigue, F.: Identification of nonlinear systems with time-varying parameters using a sliding-neural network observer. Neurocomputing 72, 1611–1620 (2009)

    Article  Google Scholar 

  43. Ghaffari, A., Krstic, M., Seshagiri, S.: Power optimization for photovoltaic microconverters using multivariable Newton-based extremum seeking. IEEE Trans. Control Syst. Technol. 22(6), 2141–2149 (2014)

    Article  Google Scholar 

  44. Kenfack Tsobze, S., Tchouani Njomo, A.F., Dzonde Naoussi, S.R., Kenne, G.D.: A new modified ESC algorithm for MPPT applied to a photovoltaic system for power losses mitigation under varying environmental conditions. Int. J. Dyn. Control (2022). https://doi.org/10.1007/s40435-022-00976-8

    Article  Google Scholar 

  45. Malek, H., Dadras, S., Chen, Y.: Performance analysis of fractional order extremum seeking control. ISA Trans. 63, 281–287 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Flanclair Tchouani Njomo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchouani Njomo, A.F., Kuate-Fochie, R., Douanla, R.M. et al. Climatic sensorless maximum power point tracking based on adaptive neuro-extremum seeking control technique in PV generation systems. Energy Syst (2023). https://doi.org/10.1007/s12667-023-00606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-023-00606-y

Keywords

Navigation