Skip to main content
Log in

Evaluation of photovoltaic solar power using the different operating temperature models over a tropical region

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

This study aimed to propose a suitable photovoltaic operating temperature model for generating optimal solar power across tropical climate regions using Nigeria as a case study. Ten existing models were evaluated using air temperature, solar radiation, and wind speed data obtained from the National Aeronautics and Space Administration’s Modern-Era Retrospective Analysis for Research and Applications, Version 2 archives over an 11-year period (2010–2020). The analyses revealed that the Risser-Fuentes model and Charles model produced the highest and lowest operating temperature values, respectively. The operating temperature values obtained from each of the models were then used in the PV energy model to generate solar power and evaluate its electrical efficiency. The results showed that the operating temperature value from the Charles model produced the highest solar power and maximum electrical efficiency across Nigeria’s four climate regions, for both the seasonal and an annual timescales. The study concluded that the lower the operating temperature of the photovoltaic module, the greater the possibility of generating more solar power with greater electrical efficiency. Therefore, the study recommends the use of the Charles model for PV system size optimization, simulation, and design for solar power generation across all climate regions in Nigeria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data supporting reported results of this research can be found in https://www.dropbox.com/s/7h9dfkezaq2gw50/MDATA2.xlsx?dl=0.

References

  1. Zouine, M., Akhsassi, M., Erraissi, N., Aarich, N., Bennouna, A., Raoufi, M., Outzourhit, A.: Mathematical Models Calculating PV Module Temperature Using Weather Data: Experimental Study, vol. 519, pp. 630–639. Springer, Singapore (2019)

    Google Scholar 

  2. Mayer, M.J., Gróf, G.: Extensive comparison of physical models for photovoltaic power forecasting. Appl. Energy 283, 116239 (2021)

    Article  Google Scholar 

  3. Dong, X.-J., Shen, J.-N., He, G.-X., Ma, Z.-F., He, Y.-J.: A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction. Energy 234, 121212 (2021)

    Article  Google Scholar 

  4. Jie, J., Bin, J., Hua, Y., Tin-tai, C., Wei, H., Gang, P.: An experimental and mathematical study of efforts of a novel photovoltaic-Trombe wall on a test room. Int. J. Energy Res. 32(6), 531–542 (2008)

    Article  Google Scholar 

  5. Kaaya, I., Ascencio-Vásquez, J., Weiss, K.A., Topič, M.: Assessment of uncertainties and variations in PV modules degradation rates and lifetime predictions using physical models. Sol. Energy 218, 354–367 (2021)

    Article  Google Scholar 

  6. Jakhrani, A.Q., Othman, A.K., Rigit, A.R.H., Samo, S.R.: Comparison of solar photovoltaic module temperature models. World Appl. Sci. J. 14, 1–8 (2011)

    Google Scholar 

  7. Singh, G.K.: Solar power generation by PV (photovoltaic) technology: a review. Energy 53, 1–13 (2013)

    Article  Google Scholar 

  8. Dubey, S., Sarvaiya, J.N., Seshadri, B.: Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—a review. Energy Procedia 33, 311–321 (2013)

    Article  Google Scholar 

  9. Charles, L.K.W., Lim, J., Won, C., Ahn, H.: Prediction model of photovoltaic module temperature for power performance of floating PVs. Energies 11(2), 417 (2018)

    Google Scholar 

  10. Ojo, O.S., Adedayo, K.D., Emmanuel, I.: Spatial analysis of rainfall in the climatic regions of Nigeria using Insitu data. J. Environ. Earth Sci. 5(18), 64–73 (2015)

    Google Scholar 

  11. Lohmann, D., Tietjen, B., Blaum, N., Joubert, D.F., Jeltsch, F.: Shifting thresholds and changing degradation patterns: climate change effects on the simulated long-term response of a semi-arid savanna to grazing. J. Appl. Ecol. 49(4), 64–73 (2012)

    Article  Google Scholar 

  12. Ojo, O.S., Adeyemi, B., Ogolo, E.O.: Assessments of the night-time and daytime radiative fluxes balance on seasonal timescale over West Africa. J. Atmos. Solar-Terres. Phys. 191, 105048 (2019)

    Article  Google Scholar 

  13. Maranan, M., Fink, A.H., Knippertz, P.: Rainfall types over southern West Africa: Objective identification, climatology and synoptic environment. Q. J. R. Meteorol. Soc. 144(714), 1628–1648 (2018)

    Article  Google Scholar 

  14. McCarty, W., Chattopadhyay, M., Conaty, A.: Evaluation of RapidScat ocean vector winds for data assimilation and reanalysis. Mon. Weather Rev. 146(1), 199–211 (2018)

    Article  Google Scholar 

  15. Molod, A., Takacs, L., Suarez, M., Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev. 8(5), 1339–1356 (2015)

    Article  Google Scholar 

  16. Bosilovich, M. G., Lucchesi, R., Suarez, M.: MERRA-2: file specification. In: GSFC-E-DAA-TN27096 (2015)

  17. Draper, C.S., Reichle, R.H., Koster, R.D.: Assessment of MERRA-2 land surface energy flux estimates. J. Clim. 31(2), 671–691 (2018)

    Article  Google Scholar 

  18. Feng, F., Wang, K.: Does the modern-era retrospective analysis for research and applications-2 aerosol reanalysis introduce an improvement in the simulation of surface solar radiation over China? Int. J. Climatol. 39(3), 1305–1318 (2019)

    Article  Google Scholar 

  19. Delgado-Bonal, A., Marshak, A., Yang, Y., Holdaway, D.: Analyzing changes in the complexity of climate in the last four decades using MERRA-2 radiation data. Sci. Rep. 10(1), 1–8 (2020)

    Article  Google Scholar 

  20. Zhang, X., Lu, N., Jiang, H., Yao, L.: Evaluation of reanalysis surface incident solar radiation data in China. Sci. Rep. 10(1), 1–20 (2020)

    Google Scholar 

  21. Evans, D.L., Florschuetz, L.W.: Terrestrial concentrating photovoltaic power system studies. Sol. Energy 20(1), 37–43 (1978)

    Article  Google Scholar 

  22. Skoplaki, E., Palyvos, J.A.: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83(5), 614–624 (2009)

    Article  Google Scholar 

  23. Krauter, S.: Increased electrical yield via water flow over the front of photovoltaic panels. Sol. Energy Mater. Sol. Cells 82(1), 131–137 (2004)

    Article  Google Scholar 

  24. Schott, T.: Operation temperatures of PV modules—a theoretical and experimental approach. In: K860065 6th EC Photovoltaic Sol. Energy Conf. (1985)

  25. Servant, J-M.: Calculation of the cell temperature for photovoltaic modules from climatic data. In: Intersol Eighty Five, pp. 1640–1643 (1986)

  26. Lasnier, F., Ang, T.G.: Photovoltaic Engineering Handbook. Routledge, Abingdon-on-Thames (2017)

    Book  Google Scholar 

  27. Ross, R.G., Smokler, M.I.: Flat-Plate Solar Array Project: Engineering Sciences and Reliability, p. 6. Jet Propulsion Lab., Pasadena (1986)

    Google Scholar 

  28. Mondol, J.D., Yohanis, Y.G., Norton, B.: Comparison of measured and predicted long term performance of grid a connected photovoltaic system. Energy Convers. Manage. 28(4), 1065–1080 (2007)

    Article  Google Scholar 

  29. Chenni, R., Makhlouf, M., Kerbache, T., Bouzid, A.: A detailed modeling method for photovoltaic cells. Energy 32(9), 1724–1730 (2007)

    Article  Google Scholar 

  30. Kurtz, S., Whitfield, K., Miller, D., Joyce, J., Wohlgemuth, J., Kempe, M., Zgonena, T.: Evaluation of high-temperature exposure of rack-mounted photovoltaic modules. In: IEEE (2009)

  31. Risser, V. V., Fuentes, M. K.: Linear regression analysis of flat-plate photovoltaic system performance data. In: 5th Photovoltaic Solar Energy Conference, pp. 623–627 (1984)

  32. Wei, C.C.: Evaluation of photovoltaic power generation by using deep learning in solar panels installed in buildings. Energies 12(18), 3564 (2019)

    Article  Google Scholar 

  33. Koondhar, M.A., Jamali, M.I., Laghari, I.A., Junejo, A.K., Rehman, M.: Temperature on PV module performance and its latest mitigation techniques: a review. Int. J. 9(6), 651–658 (2021)

    Google Scholar 

  34. Hadwan, M., Alkholidi, A.: Assessment of factors influencing the sustainable performance of photovoltaic water pumping systems. Renew. Sustain. Energy Rev. 92, 307–318 (2018)

    Article  Google Scholar 

  35. Chen, X., Huang, Y., Chen, Z.: Energy and exergy analysis of an integrated photovoltaic module and two-stage thermoelectric generator system. Appl. Therm. Eng. 212, 118605 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

Author would like to thank to the researchers whose works have been cited directly or indirectly in this paper. Author also wish to thank to the National Aeronautics and Space Administration, United States for allow access to the data used for this study.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olusola Samuel Ojo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojo, O.S. Evaluation of photovoltaic solar power using the different operating temperature models over a tropical region. Energy Syst (2023). https://doi.org/10.1007/s12667-023-00604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-023-00604-0

Keywords

Navigation