Skip to main content

Advertisement

Log in

A new communication platform for smart EMS using a mixed-integer-linear-programming

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Integration of renewable energies into the microgrid (MG) operation can potentially lead to some significant benefits, e.g., less transmission expansion planning cost, direct power supply to the AC loads based on its type, lower costs, higher power quality services and enhanced technology. However, the optimal energy management of the system would be more challenging and complicated. To this end, this paper proposes an effective energy management method for optimal management of the microgrid using advanced mixed-integer linear programming. In this paper, a new demand-side management (DSM) engine is proposed using mixed-integer linear programming for IoT-enabled grid. The microgrid is simulated using MATLAB, and a two-level communication setup facilitates communication to the cloud server. Local and global communication is facilitated using TCP/IP and MQTT protocols, respectively. Lastly, simulation model is built with distributed generators (such as photovoltaic or wind turbines) and hybrid microgrid, which is applicable in various scenarios, like residential buildings and small commercial outlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tanvir Ahammed, M., Mehedi Hasan, M., Shamsul Arefin, M., Rafiqul Islam, M., Aminur Rahman, M., Hossain, E., Tanvir Hasan, M.: Real-time non-intrusive electrical load classification over IoT using machine learning. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3104263

    Article  Google Scholar 

  2. Santos, R., Diniz, A.L., Borb, B.: Assessment of the modeling of demand response as a dispatchable resource in day-ahead hydrothermal unit commitment problems: the Brazilian case. Energies 15(11), 3928 (2022). https://doi.org/10.3390/en15113928

    Article  Google Scholar 

  3. Alhasnawi, B.N., Jasim, B.H., Anvari-Moghaddam, A., Blaabjerg, F.: A new robust control strategy for parallel operated inverters in green energy applications. Energies 13, 3480 (2020). https://doi.org/10.3390/en13133480

    Article  Google Scholar 

  4. Vardakas, J.S., Zorba, N., Verikoukis, C.V.: Power demand control scenarios for smart grid applications with finite number of appliances. Appl. Energy 162, 83–98 (2016). https://doi.org/10.1016/j.apenergy.2015.10.008

    Article  Google Scholar 

  5. Li, C., Yu, X., Yu, W., Chen, G., Wang, J.: Efficient computation for sparse load shifting in demand side management. IEEE Trans. Smart Grid 8, 250–261 (2017)

    Article  Google Scholar 

  6. Vagdoda, J., Makwana, D., Adhikaree, A., Faika, T., Kim, T.: A cloud-based multiagent system platform for residential microgrids towards smart grid community. IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA 24 December 2018

  7. Alhasnawi, B., Jasim, B., Rahman, Z.-A., Siano, P.: A novel robust smart energy management and demand reduction for smart homes based on internet of energy. Sensors 21, 4756 (2021). https://doi.org/10.3390/s21144756

    Article  Google Scholar 

  8. Wang, Y., Nguyen, T.-L., Xu, Y., Tran, Q.-T., Caire, R.: Peer-to-peer control for networked microgrids: multi-layer and multi-agent architecture design. IEEE Trans. Smart Grid (Early Access) 11, 4688–4699 (2020)

    Article  Google Scholar 

  9. Wang, K., Li, H., Maharjan, S., Zhang, Y., Guo, S.: Green energy scheduling for demand side management in the smart grid. EEE Trans. Green Commun. Netw. 2(2), 596–611 (2018)

    Article  Google Scholar 

  10. Alhasnawi, B.N., Jasim, B.H.: SCADA controlled smart home using Raspberry Pi3. In: Proceedings of the 2018 International Conference on Advance of Sustainable Engineering and Its Application (ICASEA), Wasit-Kut, Iraq, 14–15 March 2018. https://doi.org/10.1109/ICASEA.2018.8370946

  11. Moghaddam, M.H.Y., Leon-Garcia, A.: A fog-based internet of energy architecture for transactive energy management systems. IEEE Internet Things J. 5(2), 1055–1069 (2018)

    Article  Google Scholar 

  12. Alhasnawi, B.N., Jasim, B.H.: A new energy management system of on-grid/off-grid using adaptive neuro-fuzzy inference system. J. Eng. Sci. Technol. 15, 3903–3919 (2020)

    Google Scholar 

  13. Hashmi, S.A., Ali, C.F., Zafar, S.: Internet of things and cloud computing based energy management system for demand-side management in smart grid. Int. J. Energy Res. 45, 1–16 (2020)

    Google Scholar 

  14. Davarzani, S., Granella, R., Taylor, G.A., Pisica, I.: Implementation of a novel multi-agent system for demand response management in low-voltage distribution networks. Appl. Energy 253(1), 113–516 (2019)

    Google Scholar 

  15. Alhasnawi, B.N., Jasim, B.H.: A novel hierarchical energy management system based on optimization for multi-microgrid. Int. J. Electr. Eng. Inform. 12, 586–606 (2020)

    Google Scholar 

  16. Golmohamadi, H., Keypour, R., Bak-Jensen, B., Pillai, J.R.: A multi-agent based optimization of residential and industrial demand response aggregators. Int. J. Electr. Power Energy Syst. 107, 472–485 (2019)

    Article  Google Scholar 

  17. Cortes-Arcos, T.: Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology. Energy 138, 19–31 (2017)

    Article  Google Scholar 

  18. Alhasnawi, B.N., Jasim, B.H., Esteban, M.D., Guerrero, J.M.: A novel smart energy management as a service over a cloud computing platform for nanogrid appliances. Sustain. J. Rec. 12, 9686 (2020). https://doi.org/10.3390/su12229686

    Article  Google Scholar 

  19. Alhasnawi, B.N., Jasim, B.H.: Adaptive energy management system for smart hybrid microgrids. In: Proceedings of the 3rd Scientific Conference of Electrical and Electronic Engineering Researches (SCEEER), Basrah, Iraq, 15–16 June 2020. https://doi.org/10.37917/ijeee.sceeer.3rd.11

  20. Al-Ali, A.R., Zualkernan, I.A., Rashid, M., Gupta, R., AliKarar, M.: A smart home energy management system using IoT and big data analytics approach. IEEE Trans. Consum. Electron. 63(4), 426–434 (2017)

    Article  Google Scholar 

  21. Alhasnawi, B.N., Jasim, B.H.: A new internet of things enabled trust distributed demand side management system. Sustain. Energy Technol. Assess. 46, 101272 (2021)

    Google Scholar 

  22. Ahmed, M.S., Mohamed, A., Khatib, T., Shareef, H., Homod, R.Z., Ali, J.A.: Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm. Energy and Build 138, 215–227 (2017)

    Article  Google Scholar 

  23. Ahmadipour, M., Othman, M.M., Salam, Z., Alrifaey, M., Ridha, H.M., Veerasamy, V.: Optimal load shedding scheme using grasshopper optimization algorithm for islanded power system with distributed energy resources. Ain Shams Eng. J. 14, 101835 (2022)

    Article  Google Scholar 

  24. Mahapatra, C., Moharana, A.K., Leung, V.M.: Energy management in smart cities based on internet of things: peak demand reduction and energy savings. Sensors 17(12), 2812 (2017)

    Article  Google Scholar 

  25. Alhasnawi, B., Jasim, B., Siano, P., Guerrero, J.: A novel real-time electricity scheduling for home energy management system using the internet of energy. Energies 14, 3191 (2021). https://doi.org/10.3390/en14113191

    Article  Google Scholar 

  26. Al-Faruque, M.A., Vatanparvar, K.: Energy management-as-a-service over fog computing platform. IEEE Internet of Things J. 3(2), 161–169 (2016)

    Article  Google Scholar 

  27. Li, W.X., Logenthiran, T., Phan, V.T., Woo, W.L.: Implemented IoT based self-learning home management system (SHMS) for Singapore. IEEE Internet Things J. 5(3), 2212–2219 (2018)

    Article  Google Scholar 

  28. Alhasnawi, B.N., Jasim, B.H., Esteban, M.D.: A new robust energy management and control strategy for a hybrid microgrid system based on green energy. Sustain. J. Rec. 12, 5724 (2020). https://doi.org/10.3390/su12145724

    Article  Google Scholar 

  29. Yuan, G., Wang, H., Khazaei, E., Khan, B.: Collaborative advanced machine learning techniques in optimal energy management of hybrid AC/DC IoT-based microgrids. Ad Hoc Netw. 122, 102657 (2021)

    Article  Google Scholar 

  30. Bui, K.-H.N., Jung, J.J., Camacho, D.: Consensual negotiation-based decision making for connected appliances in smart home management systems. Sensors 18(7), 2206 (2018). https://doi.org/10.3390/s18072206

    Article  Google Scholar 

  31. Javidsharifi, M., Arabani, H.P., Kerekes, T., Sera, D., Guerrero, J.M.: Stochastic optimal strategy for power management in interconnected multi-microgrid systems. Electronics 11(9), 1424 (2022). https://doi.org/10.3390/electronics11091424

    Article  Google Scholar 

  32. Forcan, M., Maksimović, M.: Cloud-Fog-based approach for Smart Grid monitoring. Simul. Model. Pract. Theory 101, 101988 (2020)

    Article  Google Scholar 

  33. Ouramdane, O., Elbouchikhi, E., Amirat, Y., Le-Gall, F., Gooya, E.S.: Home energy management considering renewable resources, energy storage, and an electric vehicle as a backup. Energies 15(8), 2830 (2022). https://doi.org/10.3390/en15082830

    Article  Google Scholar 

  34. Alhasnawi, B.N., Jasim, B.H., Sedhom, B.E., Guerrero, J.M.: Consensus algorithm-based coalition game theory for demand management scheme in smart microgrid. Sustain. Cities Soc. 74, 103248 (2021). https://doi.org/10.1016/j.scs.2021.103248

    Article  Google Scholar 

  35. Alhasnawi, B.N., Jasim, B.H.: A new coordinated control of hybrid microgrids with renewable energy resources under variable loads and generation conditions. Iraqi J. Electr. Electron. Eng. (2020). https://doi.org/10.37917/ijeee.16.2.1

    Article  Google Scholar 

  36. Luna, A.C., Diaz, N.L., Graells, M., Vasquez, J.C., Guerrero, J.M.: Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: modeling, design, and experimental verification. IEEE Trans. Power Electron. (2017). https://doi.org/10.1109/TPEL.2016.2581021

    Article  Google Scholar 

  37. Tajalli, S.Z., Mardaneh, M., Taherian-Fard, E., Izadian, A., Ka-vousi-Fard, A., Dabbaghjamanesh, M., Niknam, T.: DoS-resilient distributed optimal scheduling in a Fog supporting IIoT-based smart microgrid. IEEE Trans. Ind. Appl. 56(3), 2968–2977 (2020)

    Article  Google Scholar 

  38. Alhasnawi, B.N., Jasim, B.H.: Internet of Things (IoT) for smart grids: a comprehensive review. J. Xi’an Univ. Archit. 63, 1006–7930 (2020)

    Google Scholar 

  39. Marzal, S., González-Medina, R., Salas-Puente, R., Garcerá, G., Figueres, E.: An embedded internet of energy communication platform for the future smart microgrids management. IEEE Internet of Things J. 6(4), 7241–7252 (2019)

    Article  Google Scholar 

  40. Alhasnawi, B., Jasim, B., Rahman, Z.-A., Guerrero, J., Esteban, M.: A novel internet of energy based optimal multi-agent control scheme for microgrid including renewable energy resources. Int. J. Environ. Res. Public Health 18, 8146 (2021). https://doi.org/10.3390/ijerph18158146

    Article  Google Scholar 

  41. Alhasnawi, B.N., Jasim, B.H., Sedhom, B.E., Hossain, E., Guerrero, J.M.: A new decentralized control strategy of microgrids in the internet of energy paradigm. Energies 14, 2183 (2021). https://doi.org/10.3390/en14082183

    Article  Google Scholar 

  42. Alhasnawi, B.N., Jasim, B.H., Mansoor, R., Alhasnawi, A.N., Rahman, Z.-A.S.A., Haes-Alhelou, H., Guerrero, J.M., Dakhil, A.M., Siano, P.: A new Internet of Things based optimization scheme of residential demand side management system. IET Renew. Power Gener. (2022). https://doi.org/10.1049/rpg2.12466

    Article  Google Scholar 

  43. Alhasnawi, B.N., Jasim, B.H., Siano, P., Alhelou, H.H., Al-Hinai, A.: A novel solution for day-ahead scheduling problems using the IoT-based bald eagle search optimization algorithm. Inventions 7(3), 48 (2022). https://doi.org/10.3390/inventions7030048

    Article  Google Scholar 

  44. Bahmanyar, D., Razmjooy, N., Mirjalili, S.: Multi-objective scheduling of IoT-enabled smart homes for energy management based on arithmetic optimization algorithm: a node-RED and Node MCU module-based technique. Knowl.-Based Syst. 247(8), 108762 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Naji Alhasnawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhasnawi, B.N., Jasim, B.H., Sedhom, B.E. et al. A new communication platform for smart EMS using a mixed-integer-linear-programming. Energy Syst (2023). https://doi.org/10.1007/s12667-023-00591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-023-00591-2

Keywords

Navigation