Skip to main content

Advertisement

Log in

Dual-tree complex wavelet packet transform and regularized extreme learning machine-based feature extraction and classification of power quality disturbances

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

There is an urgency to monitor, detect and classify the power quality disturbances (PQDs) due to global concern of the exponential increase of power quality (PQ) and the penetration of renewable energy sources (RESs) through power electronics-based interfacing devices to the power system. In this study, an intelligent method based on dual-tree complex wavelet packet transform (DTCWPT) is used to extract the frequency-domain features from the frequency-band signals to reveal PQ characteristics. To classify the PQDs, a regularized extreme learning machine (RELM) is used in which regularized regression method pruning the ELM by a computed suitable number of the hidden nodes in the network architecture. To test the efficiency of the proposed approach, the system is verified with eight PQDs with noise addition and multiple occurrence events cases and, at last, with practical signals generated from a PC interfaced hardware prototype. The proposed approach results in satisfactory performance for the PQ analysis and can be considered as the traditional PQ analyzer in real-time conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Sharma, B.B., Singh, K.P., Patel, A., Banshwar, A., Sharma, N.K., Pathak, M.: Classification of power quality events—an inclusive review. J. Phys. Conf. Ser. 1854(1), 012020 (2021)

    Article  Google Scholar 

  2. Chawda, G.S., Shaik, A.G., Shaik, M., Padmanaban, S., Holm-Nielsen, J.B., Mahela, O.P., Kaliannan, P.: Comprehensive review on detection and classification of power quality disturbances in utility grid with renewable energy penetration. IEEE Access 8, 146807–146830 (2020)

    Article  Google Scholar 

  3. Khetarpal, P., Tripathi, M.M.: A critical and comprehensive review on power quality disturbance detection and classification. Sustain. Comput. Inform. Syst. 28, 100417 (2020)

    Google Scholar 

  4. Singh, U.: A research review on detection and classification of power quality disturbances caused by integration of renewable energy sources. arXiv preprint arXiv:2009.11426 (2020)

  5. Bringedal, A.S., Søvikhagen, A.M.L., Aasgård, E.K., Fleten, S.E.: Backtesting coordinated hydropower bidding using neural network forecasting. Energy Syst. (2021). https://doi.org/10.1007/s12667-021-00490-4

    Article  Google Scholar 

  6. IEEE Standards Association: IEEE Recommended Practice for Monitoring Electric Power Quality, pp. 1–98. IEEE, Piscataway (2009)

    Google Scholar 

  7. Heydt, G.T., Fjeld, P.S., Liu, C.C., Pierce, D., Tu, L., Hensley, G.: Applications of the windowed FFT to electric power quality assessment. IEEE Trans. Power Delivery 14(4), 1411–1416 (1999)

    Article  Google Scholar 

  8. Szmajda, M., Górecki, K., Mroczka, J.: DFT algorithm analysis in low-cost power quality measurement systems based on a DSP processor. In: 2007 9th international conference on electrical power quality and utilisation (pp. 1–6). IEEE, Piscataway (2007)

  9. Jurado, F., Saenz, J.R.: Comparison between discrete STFT and wavelets for the analysis of power quality events. Electric Power Syst. Res. 62(3), 183–190 (2002)

    Article  Google Scholar 

  10. Victer, S. M., Ferreira, J. C., Torreão, J. R.: Signal-tuned spectral gabor transform as a tool for power quality monitoring. In 2018 18th International Conference on Harmonics and Quality of Power (ICHQP) (pp. 1–6). IEEE (2018).

  11. Stockwell, R.G.: A basis for efficient representation of the S-transform. Digital Signal Process. 17(1), 371–393 (2007)

    Article  Google Scholar 

  12. Biswal, M., Dash, P.K.: Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier. Digital Signal Process. 23(4), 1071–1083 (2013)

    Article  MathSciNet  Google Scholar 

  13. Babu, N.R., Mohan, B.J.: Fault classification in power systems using EMD and SVM. Ain Shams Eng. J. 8(2), 103–111 (2017)

    Article  Google Scholar 

  14. Xu, Y., Gao, Y., Li, Z., Lu, M.: Detection and classification of power quality disturbances in distribution networks based on VMD and DFA. CSEE J. Power Energy Syst. 6(1), 122–130 (2019)

    Google Scholar 

  15. Mishra, M., Panigrahi, R.R., Rout, P.K.: A combined mathematical morphology and extreme learning machine techniques based approach to micro-grid protection. Ain Shams Eng. J. 10(2), 307–318 (2019)

    Article  Google Scholar 

  16. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)

    Article  Google Scholar 

  17. Zheng, S., Yuan, R., Zhou, L., Yang, X., Xiong, H.: Data security aggregation method of smart grid based on BP neural network. Energy Syst. (2022). https://doi.org/10.1007/s12667-022-00499-3

    Article  Google Scholar 

  18. Meyer, D., Leisch, F., Hornik, K.: The support vector machine under test. Neurocomputing 55(1–2), 169–186 (2003)

    Article  Google Scholar 

  19. Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006)

    Article  Google Scholar 

  20. Ding, S., Zhao, H., Zhang, Y., Xu, X., Nie, R.: Extreme learning machine: algorithm, theory and applications. Artif. Intell. Rev. 44(1), 103–115 (2015)

    Article  Google Scholar 

  21. Ahmadi, M.H., Baghban, A., Sadeghzadeh, M., Zamen, M., Mosavi, A., Shamshirband, S., et al.: Evaluation of electrical efficiency of photovoltaic thermal solar collector. Eng. Appl. Comput. Fluid Mech. 14(1), 545–565 (2020)

    Google Scholar 

  22. Huang, J., Negnevitsky, M., Nguyen, D.T.: A neural-fuzzy classifier for recognition of power quality disturbances. IEEE Trans. Power Delivery 17(2), 609–616 (2002)

    Article  Google Scholar 

  23. Tavoosi, J., Mohammadzadeh, A., Pahlevanzadeh, B., Kasmani, M.B., Band, S.S., Safdar, R., Mosavi, A.H.: A machine learning approach for active/reactive power control of grid-connected doubly-fed induction generators. Ain Shams Eng. J. 13(2), 101564 (2022)

    Article  Google Scholar 

  24. Karthik, M.V., Chaudhary, P.: A novel integration of ANFIS-CRPSO based high power quality improvement in AC microgrids. Energy Syst (2022). https://doi.org/10.1007/s12667-022-00506-7

    Article  Google Scholar 

  25. Decanini, J.G., Tonelli-Neto, M.S., Malange, F.C., Minussi, C.R.: Detection and classification of voltage disturbances using a fuzzy-ARTMAP-wavelet network. Electric Power Syst. Res. 81(12), 2057–2065 (2011)

    Article  Google Scholar 

  26. Biswal, M., Dash, P.K.: Measurement and classification of simultaneous power signal patterns with an S-transform variant and fuzzy decision tree. IEEE Trans. Industr. Inf. 9(4), 1819–1827 (2012)

    Article  Google Scholar 

  27. Mahela, O.P., Shaik, A.G.: Power quality recognition in distribution system with solar energy penetration using S-transform and Fuzzy C-means clustering. Renewable Energy 106, 37–51 (2017)

    Article  Google Scholar 

  28. Gu, X., Angelov, P.P.: Self-organising fuzzy logic classifier. Inf. Sci. 447, 36–51 (2018)

    Article  MATH  Google Scholar 

  29. Huang, N., Lu, G., Cai, G., Xu, D., Xu, J., Li, F., Zhang, L.: Feature selection of power quality disturbance signals with an entropy-importance-based random forest. Entropy 18(2), 44 (2016)

    Article  Google Scholar 

  30. Ahmadi, M.H., Ahmadi, M.A., Sadatsakkak, S.A., Feidt, M.: Connectionist intelligent model estimates output power and torque of stirling engine. Renew. Sustain. Energy Rev. 50, 871–883 (2015)

    Article  Google Scholar 

  31. Cervantes, J., Li, X., Yu, W., Li, K.: Support vector machine classification for large data sets via minimum enclosing ball clustering. Neurocomputing 71(4–6), 611–619 (2008)

    Article  Google Scholar 

  32. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2015)

    Article  MathSciNet  Google Scholar 

  33. Erişti, H., Yıldırım, Ö., Erişti, B., Demir, Y.: Automatic recognition system of underlying causes of power quality disturbances based on S-Transform and Extreme Learning Machine. Int. J. Electr. Power Energy Syst. 61, 553–562 (2014)

    Article  Google Scholar 

  34. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2011)

    Article  Google Scholar 

  35. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  36. Yu, Q., Miche, Y., Eirola, E., Van Heeswijk, M., Séverin, E., Lendasse, A.: Regularized extreme learning machine for regression with missing data. Neurocomputing 102, 45–51 (2013)

    Article  Google Scholar 

  37. Sun, Z., Chang, C.C.: Structural damage assessment based on wavelet packet transform. J. Struct. Eng. 128(10), 1354–1361 (2002)

    Article  Google Scholar 

  38. Shao, H., Jiang, H., Wang, F., Wang, Y.: Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet. ISA Trans. 69, 187–201 (2017)

    Article  Google Scholar 

  39. Wang, L., Liu, Z., Cao, H., Zhang, X.: Subband averaging kurtogram with dual-tree complex wavelet packet transform for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 142, 106755 (2020)

    Article  Google Scholar 

  40. Qu, J., Zhang, Z., Gong, T.: A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion. Neurocomputing 171, 837–853 (2016)

    Article  Google Scholar 

  41. Che Kassim, F. N., Muthusamy, H., Vijean, V., Abdullah, Z., & Abdullah, R.: Dual-Tree Complex Wavelet Packet Transform for Voice Pathology Analysis. Pertanika J. Sci. Technol. 28(3) (2020)

  42. Sahani, M., Dash, P.K., Samal, D.: A real-time power quality events recognition using variational mode decomposition and online-sequential extreme learning machine. Measurement 157, 107597 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu Sekhar Samanta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, I.S., Rout, P.K., Swain, K. et al. Dual-tree complex wavelet packet transform and regularized extreme learning machine-based feature extraction and classification of power quality disturbances. Energy Syst (2023). https://doi.org/10.1007/s12667-023-00584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-023-00584-1

Keywords

Navigation