Skip to main content

Advertisement

Log in

Environmental evaluation of electricity generation from landfill gas by using LEAP and IPCC model: a case study of Karachi

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In this paper, an operational optimization model is introduced which analyzes electricity generation and its environmental effects in Karachi metropolitan by LEAP model with two different scenarios: business-as-usual and sustainable waste management (SWM). The base and final year planning of this work are 2015 and 2050 respectively. Two different models of Intergovernmental Panel on Climate Change (IPCC) and LEAP are integrated to estimate the methane flow rate and Karachi energy for non-energy emissions respectively. The GE10 Gas turbine is selected to estimate the electricity production of the landfill gas (LFG) plants. Moreover, engineering equation solver (EES) code is developed which is based on the methane flow rate and composition data gained from the IPCC default method in the SWM scenario. The results obtained from combining EES code and LEAP model demonstrates that the LFG plants can generate upto 0.4 GWh electric powers that is 1.3% of total demand in 2015. Furthermore, it will grow up to 0.8 GWh which is 1.7% of total electricity demand in 2050. However, the utilization of LFG plants escalates the cost of electricity generation but the accumulated difference of 50 years global warming intensity in planned scenarios will be upto 80.1 Mt CO2 equivalents from 2015 to 2050.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Barati, B., et al.: Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration. Biomass Bioenergy 145(1), 105927 (2021). https://doi.org/10.1016/j.biombioe.2020.105927

    Article  Google Scholar 

  2. Nojedehi, P., Heidari, M., Ataei, A., Nedaei, M., Kurdestani, E.: Environmental assessment of energy production from landfill gas plants by using long-range energy alternative planning (LEAP) and IPCC methane estimation methods: a case study of Tehran. Sustain. Energy Technol. Assess. 16(2016), 33–42 (2020). https://doi.org/10.1016/j.seta.2016.04.001

    Article  Google Scholar 

  3. Maria, C., Góis, J., Leitão, A.: Challenges and perspectives of greenhouse gases emissions from municipal solid waste management in Angola. Energy Rep. 6(1), 364–369 (2020). https://doi.org/10.1016/j.egyr.2019.08.074

    Article  Google Scholar 

  4. Shin, H., Park, J., Kim, H., Shin, E.: Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model. Energy Policy 33(10), 1261–1270 (2005). https://doi.org/10.1016/j.enpol.2003.12.002

    Article  Google Scholar 

  5. Vincent, N., Chaiechi, T., Alam, A.B.M.R.: Are emission reduction policies effective under climate change conditions ? A backcasting and exploratory scenario approach using the LEAP-OSeMOSYS Model. Appl Energy 236(November 2018), 1183–1217 (2019). https://doi.org/10.1016/j.apenergy.2018.12.045

    Article  Google Scholar 

  6. Global Methane Initiative: Global methane emissions and mitigation opportunities. Glob. Methane Initiate., vol. 2020, pp. 1–4 (2010). Accessed date; 2021-01-05. [Online]. https://www.globalmethane.org/documents/gmi-mitigation-factsheet.pdf

  7. Sohail, M., Makhdum, A., Sadaf, T.: A time series analysis of energy consumption, energy prices and economic growth in Pakistan A time series analysis of energy consumption, energy prices and economic growth in Pakistan (2019)

  8. Pohekar, S.D.Ã., Ramachandran, M.: Application of multi-criteria decision making to sustainable energy planning—a review. Renew Sustainable Energy Rev 8(4), 365–381 (2004). https://doi.org/10.1016/j.rser.2003.12.007

    Article  Google Scholar 

  9. Waqas, M., Abbas, Z., Imran, M. et al. Numerical investigation of impact of hot climate conditions on the performance of Darrieus vertical axis wind turbine. Energy Syst (2022). https://doi.org/10.1007/s12667-022-00539-y

  10. Dyner, I.: Energy demand and greenhouse gas emissions analysis in Colombia: a LEAP model application. Energy 169, 380–397 (2019). https://doi.org/10.1016/j.energy.2018.12.051

  11. Hu, G., Ma, X., Ji, J.: Scenarios and policies for sustainable urban energy development based on LEAP model—a case study of a postindustrial city: Shenzhen China. Appl. Energy 238(October 2018), 876–886 (2019). https://doi.org/10.1016/j.apenergy.2019.01.162

    Article  Google Scholar 

  12. Kowalski, K., Stagl, S., Madlener, R., Omann, I.: Sustainable energy futures: methodological challenges in combining scenarios and participatory multi-criteria analysis q. Eur. J. Oper. Res. 197(3), 1063–1074 (2009). https://doi.org/10.1016/j.ejor.2007.12.049

    Article  Google Scholar 

  13. Isa, S., et al.: International biodeterioration & biodegradation economic and environmental evaluation of land fill gas utilisation: a multi-period optimisation approach for low carbon regions. Int. Biodeterior. Biodegrad. (2015). https://doi.org/10.1016/j.ibiod.2015.04.008

    Article  Google Scholar 

  14. Vincent, N., Comfort, C., Panchakshara, G., Saratu, A., Emodi, A.: Application crossmark. Renew. Sustain. Energy Rev. 68(August 2016), 247–261 (2017). https://doi.org/10.1016/j.rser.2016.09.118

    Article  Google Scholar 

  15. Kumar, A., Bhattacharya, S.C., Pham, H.L.: Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model. Energy 28(7), 627–654 (2003). https://doi.org/10.1016/S0360-5442(02)00157-3

    Article  Google Scholar 

  16. Mirjat, N.H., Uqaili, M.A., Harijan, K., Das-Walasai, G., Mondal, A.H., Sahin, H.: Long-term electricity demand forecast and supply side scenarios for Pakistan (2015–2050): a LEAP model application for policy analysis. Energy (2018). https://doi.org/10.1016/j.energy.2018.10.012

    Article  Google Scholar 

  17. Zuberi, M.J.S., Ali, S.F.: Greenhouse effect reduction by recovering energy from waste land fi lls in Pakistan. Renew. Sustain. Energy Rev. 44, 117–131 (2015). https://doi.org/10.1016/j.rser.2014.12.028

    Article  Google Scholar 

  18. Abbas, Z., Waqas, M.: Environmental effects strategy on coal consumption and GHGs emission analysis based on the LEAP model: a case study. Energy Sourc. Part A Recover. Util. Environ. Eff. (2020). https://doi.org/10.1080/15567036.2020.1783392

    Article  Google Scholar 

  19. Mirjat, N.H., Uqaili, M.A., Harijan, K., Das-Walasai, G., Mondal, M.A.H., Sahin, H.: Long-term electricity demand forecast and supply side scenarios for Pakistan (2015–2050): a LEAP model application for policy analysis. Energy 165(October), 512–526 (2018). https://doi.org/10.1016/j.energy.2018.10.012

    Article  Google Scholar 

  20. Hainoun, A., Seif-Aldin, M., Almoustafa, S.: Formulating an optimal long-term energy supply strategy for Syria using MESSAGE model. Energy Policy 38(4), 1701–1714 (2010). https://doi.org/10.1016/j.enpol.2009.11.032

    Article  Google Scholar 

  21. Mangi, M.Y., Yue, Z., Kalwar, S., Lashari, Z.A.: Comparative analysis of urban development trends of Beijing and Karachi metropolitan areas. Sustainability (2020). https://doi.org/10.3390/su12020451

    Article  Google Scholar 

  22. Siddiqi, M.M., et al.: Potential in urban Pakistan 1–13

  23. Yah, N.F., Oumer, A.N., Idris, M.S.: Small scale hydro-power as a source of renewable energy in Malaysia: a review. Renew. Sustain. Energy Rev. 72(January), 228–239 (2017). https://doi.org/10.1016/j.rser.2017.01.068

    Article  Google Scholar 

  24. Bautista, S.: A sustainable scenario for Venezuelan power generation sector in 2050 and its costs. Energy Policy 44, 331–340 (2012). https://doi.org/10.1016/j.enpol.2012.01.060

    Article  Google Scholar 

  25. Ghauri, W.U.: Waste to energy potential in presented by (2018)

  26. Mirjat, N.H., Uqaili, M.A., Harijan, K., Das Valasai, G.: A review of energy and power planning and policies of Pakistan A review of energy and power planning and policies of Pakistan. Renew. Sustain. Energy Rev. 79(October), 110–127 (2017). https://doi.org/10.1016/j.rser.2017.05.040

    Article  Google Scholar 

  27. Zaigham, N.A., Nayyar, Z.A.: Prospects of renewable energy sources in Pakistan. Prosp. Renew. Energy Sources Pak. (2019)

  28. Khan, M.M., Khan, H.: An assessment of the problems faced by Karachi and Pakistan due to the rapid population growth of the city (2016)

  29. Hasan, A.: Land contestation in Karachi and the impact on housing and urban development. Environ. Urban. 27(1), 217–230 (2015). https://doi.org/10.1177/0956247814567263

    Article  Google Scholar 

  30. Uddin, W., et al.: Biogas potential for electric power generation in Pakistan: a survey. Renew. Sustain. Energy Rev. 54, 25–33 (2016). https://doi.org/10.1016/j.rser.2015.09.083

    Article  Google Scholar 

  31. Hasan, A.: Land contestation in Karachi and the impact on housing and urban development. Environ Urbanization 27(1), 1–14 (2015). https://doi.org/10.1177/0956247814567263

    Article  Google Scholar 

  32. Uzair Ali, M., Gong, Z., Ali, M.U., Asmi, F., Muhammad, R.: CO2 emission, economic development, fossil fuel consumption and population density in India, Pakistan and Bangladesh: a panel investigation. Int. J. Financ. Econ. (2020). https://doi.org/10.1002/ijfe.2134

    Article  Google Scholar 

  33. Ullah, W., et al.: Present status and potential of biomass energy in Pakistan based on existing and future renewable resources (2020)

  34. Abbas, Z., Harijan, K., Shaikh, P.H., Walasai, G.D., Ali, F.: Effect of ambient temperature and relative humidity on solar PV system performance: a case study of Quaid-e-Azam Solar Park, Pakistan. Sindh Univ. Res. J. Sci. Ser. 49(4), 721–726 (2017). https://doi.org/10.26692/surj/2017.12.47

    Article  Google Scholar 

  35. Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., Iyyappan, J.: Biogas production—a review on composition, fuel properties, feed stock and principles of anaerobic digestion biogas production—a review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew. Sustain. Energy Rev. 90(July), 570–582 (2018). https://doi.org/10.1016/j.rser.2018.03.093

    Article  Google Scholar 

  36. Forest, C., Paper, A., Council, I., Forest, A.: Calculation tools for estimating greenhouse gas emissions from pulp and paper mills (2005)

  37. Mahmood, H., Khan, M.M.: Urban solid waste management in Karachi, Pakistan (2019)

  38. Nojedehi, P., Heidari, M., Ataei, A., Nedaei, M., Kurdestani, E.: Environmental assessment of energy production from landfill gas plants by using long-range energy alternative planning (LEAP) and IPCC methane estimation methods: a case study of Tehran. Sustain. Energy Technol. Assess. 16(2016), 33–42 (2016). https://doi.org/10.1016/j.seta.2016.04.001

    Article  Google Scholar 

  39. Ali, M.: Integrating recycling and disposal system (2001)

  40. Rice, A.T., Li, P.Y., Sanckens, C.J.: Optimal efficiency-power tradeoff for an air compressor/expander. J. Dyn. Syst. Meas. Control. Trans. ASME 140(2), 1–10 (2018). https://doi.org/10.1115/1.4037652

    Article  Google Scholar 

  41. Meltzer, D.E.: Investigation of students’ reasoning regarding heat, work, and the first law of thermodynamics in an introductory calculus-based general physics course, pp. 1432–1446 (2004). https://doi.org/10.1119/1.1789161

  42. Ur Rehman, S.A., Cai, Y., Mirjat, N.H., Das Walasai, G., Shah, I.A., Ali, S.: The future of sustainable energy production in Pakistan: a system dynamics-based approach for estimating hubbert peaks. Energies (2017). https://doi.org/10.3390/en10111858

    Article  Google Scholar 

Download references

Acknowledgements

The authors are well acquainted with Dalian University of Technology Dalian 116024, Tianjin University, Tianjin 300350, China and Pakistan Institute of Engineering and Technology, Multan, Pakistan, for their technical support for the completion of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeshan Abbas.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Z., Waqas, M. & He, S. Environmental evaluation of electricity generation from landfill gas by using LEAP and IPCC model: a case study of Karachi. Energy Syst (2023). https://doi.org/10.1007/s12667-023-00574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-023-00574-3

Keywords

Navigation