Skip to main content

Advertisement

Log in

Feature averaging of historical meteorological data with machine and deep learning assist wind farm power performance analysis and forecasts

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

A novel feature-averaging technique of meteorological input data from recent past hours assists wind power generation forecasts from individual wind farms by capturing recent changes in conditions. Seven machine learning models and one deep learning model are configured to evaluate that data averaging technique using published 13,140 hourly data records for each of seven wind farms over an 18 months period. The datasets involve just four historically forecasted weather variables averaged in 12-hourly intervals over the previous 48 h for each hourly power record. This generates 16 time-related input variables for each hourly record. The convolutional neural network (CNN) performs best in training and testing on a supervised learning basis. However, the Adaboost (ADA) model is most accurate for semi-supervised forecasting (RMSE averages 0.177). The ADA achieves forecasting accuracy of RMSE = 0.154 on a t + 1 to t + 30 h ahead basis, outperforming on average, a seasonal autoregressive integrated moving average (SARIMA) model (RMSE = 0.183), trained with the univariate historical hourly power generated. The SARIMA model proved most accurate in forecasting t + 1 to t + 4 h ahead, whereas the ADA model provided more accurate forecasts for most of the hours in the t + 5 to t + 30 interval spread over a 12-month period. By adding additional variables the accuracy of the ADA model could potentially be further improved. Nevertheless, the results presented highlight the effectiveness of applying the proposed time-averaged feature selection technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pinson, P.: Wind energy: forecasting challenges for its operational management. Stat. Sci. 28, 564–585 (2013). https://doi.org/10.1214/13-STS445

    Article  MathSciNet  MATH  Google Scholar 

  2. Pardalos, P.M., Rebennack, S., Pereira, M.V.F., Iliadis, N.A., Pappu, V. (eds.): Handbook of Wind Power Systems. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41080-2

    Book  Google Scholar 

  3. Mal, S., Singh, R.B., Huggel, C.: Climate Change, Extreme Events and Disaster Risk Reduction: Towards Sustainable Development Goals. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-56469-2

    Book  Google Scholar 

  4. Rebennack, S., Pardalos, P.M., Pereira, M.V.F., Iliadis, N.A. (eds.): Handbook of Power Systems I, Energy Systems. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02493-1

    Book  MATH  Google Scholar 

  5. Rebennack, S., Pardalos, P.M., Pereira, M.V.F., Iliadis, N.A. (eds.): Handbook of Power Systems II, Energy Systems. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12686-4

    Book  MATH  Google Scholar 

  6. Brown, B.G., Katz, R.W., Murphy, A.H.: Time series models to simulate and forecast wind speed and wind power. J. Clim.Appl. Meteorol. 23(8), 1184–1195 (1984)

    Article  Google Scholar 

  7. Sanchez, I.: Short-term prediction of wind energy production. Int. J. Forecast. 22(1), 43–56 (2006)

    Article  MathSciNet  Google Scholar 

  8. Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., Draxl, C.: The state-of-the-art in short-term prediction of wind power: a literature overview, 2nd edn. Technical report ANEMOS.plus (2011). https://doi.org/10.13140/RG.2.1.2581.4485

  9. Wang, X., Guo, P., Huang, X.: A review of wind power forecasting models. Energy Procedia 12, 770–778 (2011)

    Article  Google Scholar 

  10. Jung, J., Broadwater, R.P.: Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev. 31, 762–777 (2014)

    Article  Google Scholar 

  11. Hanafi, S., Liu, X., Lin, Z., Lotfian, S.: A critical review of wind power forecasting methods—past, present and future. Energies 13, 3764 (2020). https://doi.org/10.3390/en13153764

    Article  Google Scholar 

  12. Lange, M., Focken, U.: Physical Approach to Short-Term Wind Power Prediction. Springer, Berlin (2006).. (ISBN-10 3-540-25662-8S)

    Google Scholar 

  13. Ezzat, A.A., Jun, M., Ding, Y.: Spatio-temporal short-term wind forecast: a calibrated regime-switching method. Ann. Appl. Stat. 13(3), 1484–1510 (2019). https://doi.org/10.1214/19-AOAS1243

    Article  MathSciNet  MATH  Google Scholar 

  14. Vladislavleva, E., Friedrich, T., Neumann, F., Wagner, M.: Predicting the energy output of wind farms based on weather data: important variables and their correlation. Renew. Energy 50, 236–243 (2013). https://doi.org/10.1016/j.renene.2012.06.036

    Article  Google Scholar 

  15. Lledo, L., Torralba, V., Soret, A., Ramon, J., Doblas-Reyes, F.J.: Seasonal forecasts of wind power generation. Renew. Energy 143, 91–100 (2019). https://doi.org/10.1016/j.renene.2019.04.135

    Article  Google Scholar 

  16. Lima, J.M., Guetter, A.K., Freitas, S.R., Panetta, J., de Mattos, J.G.Z.: A meteorological–statistic model for short-term wind power forecasting. J. Control Autom. Electr. Syst. 28, 679–691 (2017). https://doi.org/10.1007/s40313-017-0329-8

    Article  Google Scholar 

  17. Liu, H., Chen, C., Lv, X., Wu, X., Liu, M.: Deterministic wind energy forecasting: a review of intelligent predictors and auxiliary methods. Energy Convers. Manag. 195(1), 328–345 (2019). https://doi.org/10.1016/j.enconman.2019.05.020

    Article  Google Scholar 

  18. Zhang, Y., Wang, J., Wang, X.: Review on probabilistic forecasting of wind power generation. Renew. Sustain. Energy Rev. 32, 255–270 (2014)

    Article  Google Scholar 

  19. Henze, J., Siefert, M., Bremicker-Trübelhorn, S., Asanalieva, N.: Probabilistic upscaling and aggregation of wind power forecasts. Energy Sustain. Soc. 10, 15 (2020). https://doi.org/10.1186/s13705-020-00247-4

    Article  Google Scholar 

  20. Wang, J., Yang, W., Du, P., Niu, T.: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm. Energy Convers. Manag. 163, 134–150 (2018)

    Article  Google Scholar 

  21. Liu, J., Wang, X., Lu, Y.: A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system. Renew. Energy 103, 620–629 (2017)

    Article  Google Scholar 

  22. Wang, J., Yang, W., Du, P., Li, Y.: Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system. Energy 148, 59–78 (2018). https://doi.org/10.1016/j.energy.2018.01.112

    Article  Google Scholar 

  23. Tu, C.S., Hong, C.H., Huang, H.S., Chen, C.H.: Short term wind power prediction based on data regression and enhanced support vector machine. Energies 13, 6319 (2020). https://doi.org/10.3390/en13236319

    Article  Google Scholar 

  24. Erdem, E., Shi, J.: ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 88, 1405–1414 (2011)

    Article  Google Scholar 

  25. Dowell, J., Pinson, P.: Very-short-term probabilistic wind power forecasts by sparse vector autoregression. IEEE Trans. Smart Grid 7, 763–770 (2016)

    Google Scholar 

  26. Yan, J., Li, K., Bai, E., Deng, J., Foley, A.: Hybrid probabilistic wind power forecasting using temporally local Gaussian process. IEEE Trans. Sustain. Energy 7, 87–95 (2016)

    Article  Google Scholar 

  27. Cadenas, E., Rivera, W., Campos-Amexcua, R., Heard, C.: Wind speed prediction using a univariate ARIMA model and a multivariate NARX model. Energies (2016). https://doi.org/10.3390/en9020109

    Article  Google Scholar 

  28. Eldali, F.A.A., Hansen, T., Suryanarayanan, S., Chong, E.K.P.: Employing ARIMA models to improve wind power forecasts: a case study in ERCOT. In: North American Power Symposium (IEEE) 18–20 September, Denver, Colorado, USA (2016). https://doi.org/10.1109/NAPS.2016.7747861

  29. Garcıa, J.L.T., Caldero, E.C., Avalos, G.G., Heras, E.R., Tshikala, A.M.: Forecast of daily output energy of wind turbine using sARIMA and non-linear-autoregressive models. Adv. Mech. Eng. (2019). https://doi.org/10.1177/1687814018813464

    Article  Google Scholar 

  30. Yuan, X., Tan, Q., Lei, X., Yuan, Y., Wu, X.: Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine. Energy 129, 122–137 (2017). https://doi.org/10.1016/j.energy.2017.04.094

    Article  Google Scholar 

  31. Foley, A.M., Leahy, P.G., Marvuglia, A., McKeogh, E.J.: Current methods and advances in forecasting of wind power generation. Renew. Energy 37, 1–8 (2012)

    Article  Google Scholar 

  32. Kusiak, A., Zheng, H., Song, Z.: Short-term prediction of wind farm power: a data mining approach. IEEE Trans. Energy Convers. 24(1), 125–136 (2009)

    Article  Google Scholar 

  33. Treiber, N.A., Heinermann, J., Kramer, O.: Aggregation of features for wind energy prediction with support vector regression and nearest neighbors. In: European Conference on Machine Learning, DARE Workshop (Conference Paper) (2013)

  34. Kumar, P.S., Lopez, D.: Forecasting of wind speed using feature selection and neural networks. Int. J. Renew. Energy Res. 6(3), 833–837 (2016)

    Google Scholar 

  35. Martín-Vázquez, R., Aler, R., Galván, I.M.: A study on feature selection methods for wind energy prediction advances in computational intelligence. Lect. Notes Comput. Sci. 10305, 698–707 (2017). https://doi.org/10.1007/978-3-319-59153-7_60

    Article  Google Scholar 

  36. Silva, L.: A feature engineering approach to wind power forecasting: GEFCom 2012. Int. J. Forecast. 30(2), 395–401 (2014). https://doi.org/10.1016/j.ijforecast.2013.07.007

    Article  Google Scholar 

  37. Marugán, A.P., Márquez, F.P.G., Perez, I.M.P., Ruiz-Hernández, D.A.: Survey of artificial neural network in wind energy systems. Appl. Energy 228, 1822–1836 (2018). https://doi.org/10.1016/j.apenergy.2018.07.084

    Article  Google Scholar 

  38. Nazir, M.S., Alturise, F., Alshmrany, S., Nazir, H.M.J., Bilal, M., Abdalla, A.N., Sanjeevikumar, P., Ali, Z.M.: Wind generation forecasting methods and proliferation of artificial neural network: a review of five years research trend. Sustainability 12, 3778 (2020). https://doi.org/10.3390/su12093778

    Article  Google Scholar 

  39. Mohandes, M.A., Rehmann, S., Halawani, T.O.: A neural networks approach for wind speed prediction. Renew. Energy 13(3), 345–354 (1998)

    Article  Google Scholar 

  40. Catalao, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: An artificial neural network approach for short-term wind power forecasting in Portugal. In: IEEE, 15th International Conference on Intelligent System Applications to Power Systems 8109 (2009). https://doi.org/10.1109/ISAP.2009.5352853

  41. Han, S., Liu, Y., Yan, J.: Neural network ensemble method study for wind power prediction. In: IEEE Asia Pacific Power and Energy Engineering Conference (APPEEC) (2011). https://doi.org/10.1109/APPEEC.2011.5748787

  42. Peng, H., Liu, F., Yang, X.: A hybrid strategy of short term wind power prediction. Renew. Energ. 50, 590–595 (2013). https://doi.org/10.1016/j.renene.2012.07.022

    Article  Google Scholar 

  43. Pelletier, F., Masson, C., Tahan, A.: Wind turbine power curve modelling using artificial neural network. Renew. Energy 89, 207–214 (2016). https://doi.org/10.1016/j.renene.2015.11.065

    Article  Google Scholar 

  44. Rani, R.H.J., Victoire, T.A.A.: Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer. PLoS ONE 13(5), e0196871 (2018). https://doi.org/10.1371/journal.pone.0196871

    Article  Google Scholar 

  45. Mishra, S.P., Dash, P.K.: Short-term prediction of wind power using a hybrid pseudo-inverse Legendre neural network and adaptive firefly algorithm. Neural Comput. Appl. 31, 2243–2268 (2019). https://doi.org/10.1007/s00521-017-3185-3

    Article  Google Scholar 

  46. Zameer, A., Arshad, J., Khan, A., Raja, M.A.Z.: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Convers. Manag. 134, 361–372 (2017). https://doi.org/10.1016/j.enconman.2016.12.032

    Article  Google Scholar 

  47. Shahid, F., Khan, A., Zameer, A., Arshad, J., Safdar, K.: Wind power prediction using a three stage genetic ensemble and auxiliary predictor. Appl. Soft Comput. J. 90, 106151 (2020). https://doi.org/10.1016/j.asoc.2020.106151

    Article  Google Scholar 

  48. Zhang, J., Yan, J., Infield, D., Liu, Y., Lien, F.: Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Appl. Energy 241, 229–244 (2019). https://doi.org/10.1016/j.apenergy.2019.03.044

    Article  Google Scholar 

  49. Shahid, F., Zameer, A., Mehmood, A., Raja, M.A.Z.: A novel wavenets long short term memory paradigm for wind power prediction. Appl. Energy 269, 115098 (2020). https://doi.org/10.1016/j.apenergy.2020.115098

    Article  Google Scholar 

  50. Shahid, F., Zameer, A., Muneeb, M.: A novel genetic LSTM model for wind power forecast. Energy 223, 120069 (2021). https://doi.org/10.1016/j.energy.2021.120069

    Article  Google Scholar 

  51. Manobel, B., Sehnke, F., Lazzús, J.A., Salfate, I., Felder, M., Montecinos, S.: Wind turbine power curve modeling based on Gaussian processes and artificial neural networks. Renew. Energy 125, 1015–1020 (2018). https://doi.org/10.1016/j.renene.2018.02.081

    Article  Google Scholar 

  52. Heinermann, J., Kramer, O.: Precise wind power prediction with SVM ensemble regression. In: Artificial Neural Networks and Machine Learning—ICANN. Springer, Switzerland, pp. 797–804 (2014)

  53. Jiang, P., Wang, Y., Wang, J.: Short-term wind speed forecasting using a hybrid model. Energy 119, 561–577 (2017). https://doi.org/10.1016/j.energy.2016.10.040

    Article  Google Scholar 

  54. Taieb, S.B., Hyndman, R.J.: A gradient boosting approach to the Kaggle load forecasting competition. Int. J. Forecast. 30(2), 382–394 (2014). https://doi.org/10.1016/j.ijforecast.2013.07.005

    Article  Google Scholar 

  55. Lahouar, A., Hadj Slama, J.B.: Hour-ahead wind power forecast based on random forests. Renew. Energy 109, 529–541 (2017). https://doi.org/10.1016/j.renene.2017.03.064

    Article  Google Scholar 

  56. Mangalova, E., Agafonov, E.: Wind power forecasting using the k-nearest neighbors algorithm. Int. J. Forecast. 30(2), 402–406 (2014). https://doi.org/10.1016/j.ijforecast.2013.07.008

    Article  Google Scholar 

  57. Treiber, N.A., Heinermann, J., Kramer, O.: Wind power prediction with machine learning. In, Lassig, J., Kersting K., Morik K. (eds.) Computational Sustainability, Studies in Computational Intelligence 645, pp. 13–29. Springer, Cham. (2016). https://doi.org/10.1007/978-3-319-31858-5_2

  58. Wood, D.A.: Country-wide German hourly wind power dataset mined to provide insight to predictions and forecasts with optimized data-matching machine learning. Renew. Energy Focus 34, 69–90 (2020). https://doi.org/10.1016/j.ref.2020.06.005

    Article  Google Scholar 

  59. Wood, D.A.: German country-wide renewable power generation from solar plus wind mined with an optimized data matching algorithm utilizing diverse variables. Energy Syst. 11, 1003–1045 (2020). https://doi.org/10.1007/s12667-019-00347-x

    Article  Google Scholar 

  60. Qureshi, A.S., Khan, A., Zameer, A., Usman, A.: Wind power prediction using deep neural network based meta regression and transfer learning. Appl. Soft Comput. 58, 742–755 (2017). https://doi.org/10.1016/j.asoc.2017.05.031

    Article  Google Scholar 

  61. Lin, Z., Liu, X.: Wind power forecasting of an onshore wind turbine based on high-frequency SCADA data and deep learning neural network. Energy 201, 117693 (2020). https://doi.org/10.1016/j.energy.2020.117693

    Article  Google Scholar 

  62. Lin, Z., Liu, X., Collu, M.: Wind power prediction based on high-frequency SCADA data along with isolation forest and deep learning neural networks. Int. J. Electr. Power Energy Syst 118, 105835 (2020). https://doi.org/10.1016/j.ijepes.2020.105835

    Article  Google Scholar 

  63. Hong, Y.Y., Rioflorido, C.L.P.P.: A hybrid deep learning-based neural network for 24-h ahead wind power forecasting. Appl. Energy 250, 530–539 (2019). https://doi.org/10.1016/j.apenergy.2019.05.044

    Article  Google Scholar 

  64. Gensler, A., Henze, J., Sick, B., Raabe, N.: Deep learning for solar power forecasting—an approach using AutoEncoder and LSTM neural networks. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, pp. 002858–002865 (2016)

  65. Meng, A., Chen, S., Ou, Z., Ding, W., Zhou, H., Fan, J., Yin, H.: A hybrid deep learning architecture for wind power prediction based on bi-attention mechanism and crisscross optimization. Energy 238B, 121795 (2022). https://doi.org/10.1016/j.energy.2021.121795

    Article  Google Scholar 

  66. Özcan, M., Keysan, O., Satır, B.: Optimum bidding strategy for wind and solar power plants in day-ahead electricity market. Energy Syst. 12, 955–987 (2021). https://doi.org/10.1007/s12667-021-00441-z

    Article  Google Scholar 

  67. Yörükoğlu, M., Aydın, S.: Wind turbine selection by using MULTIMOORA method. Energy Syst. 12, 863–876 (2021). https://doi.org/10.1007/s12667-020-00387-8

    Article  Google Scholar 

  68. Christoforou, E., Emiris, I.Z., Florakis, A., Rizou, D., Zaharia, S.: Spatio-temporal deep learning for day-ahead wind speed forecasting relying on WRF predictions. Energy Syst. (2021). https://doi.org/10.1007/s12667-021-00480-6

    Article  Google Scholar 

  69. Omar, O.A.M., Ahmed, H.M., Elbarkouky, R.A.: Wind turbines new criteria optimal site matching under new capacity factor probabilistic approaches. Energy Syst. (2021). https://doi.org/10.1007/s12667-021-00463-7

    Article  Google Scholar 

  70. Mahmoud, M.M., Aly, M.M., Salama, H.S., Abdel-Rahim, A.M.: A combination of an OTC based MPPT and fuzzy logic current control for a wind-driven PMSG under variability of wind speed. Energy Syst. (2021). https://doi.org/10.1007/s12667-021-00468-2

    Article  Google Scholar 

  71. Barreto, G.A., Brasil, I.S., Souza, L.G.M.: Revisiting the modeling of wind turbine power curves using neural networks and fuzzy models: an application-oriented evaluation. Energy Syst. (2021). https://doi.org/10.1007/s12667-021-00449-5

    Article  Google Scholar 

  72. SciKit Learn: Supervised and unsupervised machine learning models in Python. https://scikit-learn.org/stable/ (2021). Accessed 2 Dec 2021

  73. TensorFlow: Deep learning Keras models in Python. https://www.tensorflow.org/guide/keras/sequential_model (2021). Accessed 2 Dec 2021

  74. GridSearchCV: SciKit Learn search function to find optimum parameter values for an estimator. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html (2021). Accessed 6 Dec 2021

  75. BayesSearchCV: Bayesian optimization of hyperparameters by SciKit Learn function. https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html (2021). Accessed 6 Dec 2021

  76. Xiao, L., Dong, Y., Dong, Y.: An improved combination approach based on Adaboost algorithm for wind speed time series forecasting. Energy Convers. Manag. 160, 273–288 (2018). https://doi.org/10.1016/j.enconman.2018.01.038

    Article  Google Scholar 

  77. Khan, M., Liu, T., Ullah, F.: A new hybrid approach to forecast wind power for large scale wind turbine data using deep learning with TensorFlow framework and principal component analysis. Energies 12, 2229 (2019). https://doi.org/10.3390/en12122229

    Article  Google Scholar 

  78. Han, L., Qiao, Y., Li, M., Shi, L.: Wind power ramp event forecasting based on feature extraction and deep learning. Energies 13, 6449 (2020). https://doi.org/10.3390/en13236449

    Article  Google Scholar 

  79. Chaudhary, A., Sharma, A., Kumar, A., Dikshit, K., Kumar, N.: Short term wind power forecasting using machine learning techniques. J. Stat. Manag. Syst. 20(1), 145–156 (2020). https://doi.org/10.1080/09720510.2020.1721632

    Article  Google Scholar 

  80. Acikgoz, H., Yildiz, C., Sekkeli, M.: An extreme learning machine based very short-term wind power forecasting method for complex terrain. Energy Sources Part A Recov. Util. Environ. Effects 42(22), 2715–2730 (2020). https://doi.org/10.1080/15567036.2020.1755390

    Article  Google Scholar 

  81. Yesilbudak, M., Sagiroglu, S., Colak, I.: A new approach to very short term wind speed prediction using k-nearest neighbor classification. Energy Convers. Manag. 69, 77–86 (2013). https://doi.org/10.1016/j.enconman.2013.01.033

    Article  Google Scholar 

  82. Lv, X., Cheng, X., Shuang, Y., Tang, Y.M.: Short-term power load forecasting based on balanced KNN. Mater. Sci. Eng. 322, 072058 (2018). https://doi.org/10.1088/1757-899X/322/7/072058

    Article  Google Scholar 

  83. Bilal, B., Ndongo, M., Adjallah, K.H., Sava, A., Kebe, C.M.F., Ndiaye, P.A., Sambou, V.: Wind turbine power output prediction model design based on artificial neural networks and climatic spatiotemporal data. In: Proceedings of the IEEE International Conference on Industrial Technology Lyon, France 20–22, pp. 1085–1092 (2018)

  84. Vassallo, D., Krishnamurthy, R., Sherman, T., Fernando, H.J.S.: Analysis of random forest modeling strategies for multi-step wind speed forecasting. Energies 13, 5488 (2020). https://doi.org/10.3390/en13205488

    Article  Google Scholar 

  85. Stetco, A., Dinmohammadi, E., Zhao, X., Robu, V., Flynn, D., Barnes, M., Keane, J., Nenadic, G.: Machine learning methods for wind turbine condition monitoring: a review. Renew. Energy 133, 620–635 (2019). https://doi.org/10.1016/j.renene.2018.10.047

    Article  Google Scholar 

  86. SciKit Learn: K-fold cross-validator function to split dataset into k consecutive folds between training and testing sets. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html (2021). Accessed 6 Dec 2021

  87. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1970)

    MATH  Google Scholar 

  88. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control, 5th edn, Wiley, Hoboken, New Jersey U.S.A (2015). (ISBN: 978-1-118-67502-1)

  89. Cadenas, E., Rivera, W.: Wind speed forecasting in the South Coast of Oaxaca, México. Renew. Energy 32(12), 2116–2128 (2007). https://doi.org/10.1016/j.renene.2006.10.005

    Article  Google Scholar 

  90. Statsmodels: Statistical models in Python for timeseries analysis. https://www.statsmodels.org/stable/tsa.html (2021). Accessed 6 Dec 2021

  91. Wang, S., Feng, J., Liu, G.: Application of seasonal time series model in the precipitation forecast. Math. Comput. Model. 58, 677–686 (2013). https://doi.org/10.1016/j.mcm.2011.10.034

    Article  Google Scholar 

  92. Hong, T., Pinson, P., Fan, S.: Global energy forecasting competition 2012. Int. J. Forecast. 30(2), 357–363 (2014)

    Article  Google Scholar 

  93. Data Source: Global energy forecasting competition. https://www.kaggle.com/c/GEF2012-wind-forecasting/data (2012). Accessed 7 Dec 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Wood.

Ethics declarations

Conflict of interest

The author confirms that he has no conflicts of interest and has received no external or institutional funding associated with the research content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, D.A. Feature averaging of historical meteorological data with machine and deep learning assist wind farm power performance analysis and forecasts. Energy Syst 14, 1023–1049 (2023). https://doi.org/10.1007/s12667-022-00502-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-022-00502-x

Keywords

Navigation