Skip to main content

Advertisement

Log in

GLMS control strategy based DSTATCOM for PQ enhancement: modeling and comparative analysis

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The power quality (PQ) improvement employing appropriate intelligent controllers is identified as a suitable solution for the dependable, safe, and stable operation in the electric utility systems (EUS). Hence, this paper proposes new types of neural network (NN) based Greedy Least Mean Square (GLMS) controllers for distributed static compensators (DSTATCOM). First, the EUS is developed by considering current source-based non linear load using the MATLAB/Simulink environment. Next, both controllers are implemented by their own learning principle using embedded systems toolboxes. The proposed scheme combines different weighting factors like step size, learning rate and convergence factor to achieve the approximate tuned weight. Then, the final weighting components are achieved by adding DC and AC PI controller weights corresponding to the mean value of active/reactive weight of load currents for the triggering pattern. The proposed control algorithm provides a precise control for the system by maintaining reduced voltage across the self-braced capacitor as compared to the Adaptive Least Mean Square (ALMS) controller. The other PQ merits like better voltage regulation, load balancing, total harmonic distortion (THD) suppression, and power factor (P.F) improvement are attained. Finally, experimental results obtained from the proposed controller fulfill all the shunt-related PQ requirements as per IEEE benchmark for the different case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ghosh, A., Ledwich, G.: Power quality enhancement using custom power devices. Springer, New York (2009)

    Google Scholar 

  2. Liu, H., Hussain, F., Shen, Y.: Power quality disturbances classification using compressive sensing and maximum likelihood. IETE Tech. Rev. 35(4), 359–368 (2018)

    Article  Google Scholar 

  3. Thakur, N., Awasthi, Y.K., Siddiqui, A.S.: Reliability analysis and power quality improvement model using enthalpy based grey wolf optimizer. Energy Syst. 12, 31–59 (2021)

    Article  Google Scholar 

  4. Singh, B., Arya, S.R., Jain, C.: Simple peak detection control algorithm of distribution static compensator for power quality improvement. IET Power Electron. 7(7), 1736–1746 (2014)

    Article  Google Scholar 

  5. Singh, B., Jayaprakash, P., Kothari, D.P., Chandra, A., Haddad, K.A.: Comprehensive study of DSTATCOM configurations. IEEE Trans. Industr. Inf. 10(2), 854–870 (2014)

    Article  Google Scholar 

  6. Zia, M.F., Elbouchikhib, E., Benbouzid, M.: Microgrids energy management systems: a critical review on methods, solutions, and prospects. Appl. Energy 222, 1033–1055 (2018)

    Article  Google Scholar 

  7. Liao, H.: Review on distribution network optimization under uncertainty. Energies 12(17), 3369 (2019)

    Article  Google Scholar 

  8. Alizadeh, R., Lund, P.D., Soltanisehat, L.: Outlook on biofuels in future studies: a systematic literature review. Renew. Sustain. Energy Rev. 134, 110326 (2020)

    Article  Google Scholar 

  9. Swarnkar, P., Jain, S.K., Nema, R.K.: Adaptive control schemes for improving the control system dynamics: a review. IETE Tech. Rev. 31(1), 17–33 (2014)

    Article  Google Scholar 

  10. Landau, I.D., Lozano, R., M’Saad, M., Karimi, A.: Adaptive control: algorithms, analysis and applications, 2nd edn. Springer-Verlag, London (2011)

    Book  MATH  Google Scholar 

  11. AraujoRibeiro, R.L., De Azevedo, C.C., De Sousa, R.M.: A robust adaptive control strategy of active power filters for power-factor correction, harmonic compensation, and balancing of nonlinear loads. IEEE Trans. Power Electron. 27(2), 718–730 (2012)

    Article  Google Scholar 

  12. Dash, S.K., Ray, P.K.: A New PV-Open-UPQC Configuration for voltage sensitive loads utilizing novel adaptive controllers. IEEE Trans. Industr. Inf. 17(1), 421–429 (2021)

    Article  Google Scholar 

  13. Chilipi, R.R., Sayari, N.A., Beig, A.R., Hosani, K.A.: A multitasking control algorithm for grid-connected inverters in distributed generation applications using adaptive noise cancellation filters. IEEE Trans. Energy Convers. 31(2), 714–727 (2016)

    Article  Google Scholar 

  14. Kabir, M. A., and Mahbub, U.: Synchronous detection and digital control of shunt active power filter in power quality improvement. 2011 IEEE Power Energy Conference at llinois, pp. 1–5, Illinois (2011). https://doi.org/10.1109/PECI.2011.5740499

  15. Mikkili, S., Panda, A.K.: Types-1 and -2 fuzzy logic controllers-based shunt active filter Id-Iq control strategy with different fuzzy membership functions for power quality improvement using RTDS hardware. IET Power Electron. 6(4), 818–833 (2013)

    Article  Google Scholar 

  16. Badoni, M., Singh, A., Singh, B.: Adaptive Neurofuzzy inference system Least-Mean-Square-based control algorithm for DSTATCOM. IEEE Trans. Industr. Inf. 12(2), 483–492 (2016)

    Article  Google Scholar 

  17. Mangaraj, M., Panda, A. K., and Penthia, T.: Neural network control technique based sensor less DSTATCOM for the power conditioning. In: 2015 Annual IEEE India Conference (INDICON), pp. 1–6, New Delhi, (2015). https://doi.org/10.1109/INDICON.2015.7443184

  18. Qasim, M., Khadkikar, V.: Application of artificial neural networks for shunt active power filter control. IEEE Trans. Ind. Inf. 10(3), 1765–1774 (2014)

    Article  Google Scholar 

  19. Arya, S. R., Singh, B., Chandra, A., and AI-Haddad, K.: Control of DSTATCOM using adjustable step least mean square control algorithm. In: 2012 IEEE Fifth Power India Conference, pp. 1–6, (2012). https://doi.org/10.1109/INDICON.2015.7443184

  20. Arya, S.R., Singh, B.: Performance of DSTATCOM using Leaky LMS control algorithm. IEEE J. Emerg. Select. Top. Power Electron. 1(2), 104–113 (2013)

    Article  Google Scholar 

  21. Arya, S., Singh, B.: Neural network based conductance estimation control algorithm for shunt compensator. IEEE Trans. Ind. Inform. 10(1), 569–577 (2014)

    Article  Google Scholar 

  22. Arya, S.R., Singh, B.: Implementation of Kernel incremental metalearning algorithm in distribution static compensator. IEEE Trans. Power Electron. 30(3), 1157–1169 (2015)

    Article  Google Scholar 

  23. Esteban-Sánchez, N., Pizarro, C., Velázquez-Iturbide, J.Á.: Evaluation of a didactic method for the active learning of Greedy algorithms. IEEE Trans. Educ. 57(2), 83–91 (2014)

    Article  Google Scholar 

  24. Mileounis, G., Babadi, B., Kalouptsidis, N., Tarokh, V.: An Adaptive Greedy algorithm with application to nonlinear communications. IEEE Trans. Signal Process. 58(6), 2998–3007 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wen, Q., Ma, X.: Efficient Greedy LLL algorithms for lattice decoding. IEEE Trans. Wireless Commun. 15(5), 3560–3572 (2016)

    Article  Google Scholar 

  26. IEEE 519–2014: IEEE recommended practice and requirements for harmonic control in electric power systems (2014)

  27. Patnaik, S.S., Panda, A.K.: Real-time performance analysis and comparison of various control schemes for particle swarm optimization-based shunt active power filters. Int. J. Electr. Power Energy Syst. 52, 185–197 (2013)

    Article  Google Scholar 

  28. Panda, A.K., Mangaraj, M.: DSTATCOM employing hybrid neural network control technique for power quality improvement. IET Power Electron. 10(4), 480–489 (2017)

    Article  Google Scholar 

  29. Mangaraj, M., Panda, A.K.: NBP-based icosϕ control strategy for DSTATCOM. IET Power Electron. 10(12), 1617–1625 (2017)

    Article  Google Scholar 

  30. Oruganti, V.S.R.V., Bubshait, A.S., Dhanikonda, V.S.S.S.S., Simoes, M.G.: Real-time control of hybrid active power filter using conservative power theory in industrial power system. IET Power Electron. 10(2), 196–207 (2017)

    Article  Google Scholar 

  31. Javadi, A., Woodward, L., Al-Haddad, K.: Real-Time implementation of a three-phase THSeAF based on a VSC and a P+R controller to improve the power quality of weak distribution systems. IEEE Trans. Power Electron. 33(3), 2073–2082 (2018)

    Article  Google Scholar 

  32. Mangaraj, M., Panda, A.K.: Modelling and simulation of KHLMS algorithm-based DSTATCOM. IET Power Electron. 12(9), 2304–2311 (2019)

    Article  Google Scholar 

  33. Mangaraj, M.: Operation of Hebbian LMS controlled DSTATCOM. IET Gener. Transm. Distrib. 15, 1939–1948 (2021). https://doi.org/10.1049/gtd2.12146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jogeswara Sabat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabat, J., Mangaraj, M. GLMS control strategy based DSTATCOM for PQ enhancement: modeling and comparative analysis. Energy Syst 14, 495–514 (2023). https://doi.org/10.1007/s12667-021-00489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-021-00489-x

Keywords

Navigation