Skip to main content

Advertisement

Log in

Recent progress in thermal and optical enhancement of low temperature solar collector

  • Review Article
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The use of renewable energy systems including wind, geothermal, and solar is increasing on a daily basis at industrial and domestic applications scale. The restrictions and regulations imposed by developed and developing countries on the industrial sector to reduce greenhouse gases emission have a significant effect on the progress and development of renewable energy systems. Among the most widely used renewable energy sources is solar energy due to its cheap maintenance and wide applications from a temperature point of view. In this work, for the first time, low-temperature solar collectors are reviewed and discussed for different types of collectors, and the various technical progress in thermal and optics are presented. The contribution of this survey is that cutting-edge techniques such as the solar collector nano-fluids for heat transfer enhancement and the phase change material for storage are delivered. The applications of these emergent techniques in different types of solar collectors are comprehensively reported and their performance is deeply discussed. It can be that the most important parameters affecting the solar collector’s performance are the geometry of the solar collectors. Subsequently, geometry modifications are reviewed and discussed for different solar collectors, and it can conclude that a proper design of solar collectors can reduce their costs by 10%. Thanks to the present systematic discussion on the low-temperature solar collectors, this work will provide fruitful information for engineers and researchers about the applications of solar collectors as well as it provides directions and future recommendations for future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

CCPC:

Crossed compound parabolic collectors

CPC:

Compound parabolic collectors

CTC:

Cylindrical trough collector

CTM:

Continuous tracking modes

EPBT:

Evaluated the energy payback time

EPF:

Energy production factor

ETC:

Evacuated tube collectors

FPC:

Flat plate collector

FMHPA:

Flat micro-heat pipe arrays

FVM:

Finite volume method

GRT:

Graphical ray tracing

HFC:

Heliostat field collector

ITC:

Intermittent tracking modes

LCCE:

Life cycle conversion efficiency

LFR:

Linear Fresnel reflector

MHPA:

Micro heat pipe arrays

MLG:

Multilayer graphene

PCMs:

Phase change materials

PHP:

Pulsating heat pipe

PTC:

Parabolic trough collector

PDR:

Parabolic dish reflector

SAR:

Solar adsorption refrigeration system

SWCNT:

Single-walled carbon nanotubes

a:

Absorbance of absorber plate

\({\mathrm{A}}_{\mathrm{t}}\) :

Collector area (m2)

C:

Specific heat of the air (J/kg °C)

b0 :

Incidence angle modifier constant

C0 :

Intercept efficiency (%)

C1 :

Negative of the first-order coefficient of the efficiency (W/m2 °C)

CR:

Geometrical concentration ratio

F/ :

Collector fin efficiency factor

Gtest :

Flow rate per unit area at test condition (kg/s m2)

KL :

Production of extinction coefficient and the thickness of each cover plate At test condition (kg/s m2)

\(\dot{\mathrm{m}}\) :

Mass flow rate (kg/s)

NG :

Number of cover plates

\({\dot{\mathrm{Q}}}_{\mathrm{u}}\) :

Energy gained from the collector (W)

S:

Solar radiation (W/m2)

\({\mathrm{T}}_{\mathrm{o}}\) :

Outlet air temperature (°C)

UL :

Overall loss coefficient of collector per unit (W/m2K

\(\alpha\) :

The absorber plate absorptance

\({\upeta }_{\mathrm{t}}\) :

Thermal performance (%)

\({\upeta }_{\mathrm{o}}\) :

Optical efficiency

μR :

Index of refraction of cover material

ρR :

Reflector of walls of CPC

θC :

Half-acceptance angle of CPC (degree)

τ:

The product of the glass cover transmittance

References

  1. Laurent, A., Espinosa, N.: Environmental impacts of electricity generation at global, regional and national scales in 1980–2011: what can we learn for future energy planning? Energy Environ. Sci. 8(3), 689–701 (2015)

    Article  Google Scholar 

  2. Gaziulusoy, A.I., Brezet, H.: Design for system innovations and transitions: a conceptual framework integrating insights from sustainablity science and theories of system innovations and transitions. J. Clean. Prod. 108, 558–568 (2015)

    Article  Google Scholar 

  3. Ahmadi, A., Jamali, D., Ehyaei, M., Assad, M.E.H.: Energy, exergy, economic and exergoenvironmental analyses of gas and air bottoming cycles for production of electricity and hydrogen with gas reformer. J. Clean. Prod. 259, 120915 (2020). https://doi.org/10.1016/j.jclepro.2020.120915

    Article  Google Scholar 

  4. Li, Z., Ehyaei, M., Ahmadi, A., Jamali, D., Kumar, R., Abanades, S.: Energy, exergy and economic analyses of new coal-fired cogeneration hybrid plant with wind energy resource. J. Clean. Prod. 269, 122331 (2020). https://doi.org/10.1016/j.jclepro.2020.122331

    Article  Google Scholar 

  5. Kalogirou, S.: McEvoy’s Handbook of Photovoltaics: Fundamentals and Applications. Academic Press, New York (2017)

    Google Scholar 

  6. Alizadeh, S., Ghazanfari, A., Ehyaei, M., Ahmadi, A., Jamali, D., Nedaei, N., et al.: Investigation the integration of heliostat solar receiver to gas and combined cycles by energy, exergy, and economic point of views. Appl. Sci. 10(15), 5307 (2020)

    Article  Google Scholar 

  7. Kalogirou, S.A.: Solar Energy Engineering: Processes and Systems. Academic Press, New York (2013)

    Google Scholar 

  8. Dincer, I.: Renewable energy and sustainable development: a crucial review. Renew. Sustain. Energy Rev. 4(2), 157–175 (2000)

    Article  Google Scholar 

  9. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294 (2012)

    Article  Google Scholar 

  10. Modi, A., Bühler, F., Andreasen, J.G., Haglind, F.: A review of solar energy based heat and power generation systems. Renew. Sustain. Energy Rev. 67, 1047–1064 (2017)

    Article  Google Scholar 

  11. Fudholi, A., Sopian, K.: A review of solar air flat plate collector for drying application. Renew. Sustain. Energy Rev. 102, 333–345 (2019)

    Article  Google Scholar 

  12. Teles, M.D.P.R., Ismail, K.A., Arabkoohsar, A.: A new version of a low concentration evacuated tube solar collector: optical and thermal investigation. Sol. Energy 180, 324–339 (2019)

    Article  Google Scholar 

  13. Shah, S.K., Aye, L., Rismanchi, B.: Seasonal thermal energy storage system for cold climate zones: a review of recent developments. Renew. Sustain. Energy Rev. 97, 38–49 (2018)

    Article  Google Scholar 

  14. Hottel, H.C.: Performance of flat-plate solar heat collectors. Trans ASME 64, 91 (1942)

    Google Scholar 

  15. Pranesh, V., Velraj, R., Christopher, S., Kumaresan, V.: A 50 year review of basic and applied research in compound parabolic concentrating solar thermal collector for domestic and industrial applications. Sol. Energy 187, 293–340 (2019)

    Article  Google Scholar 

  16. Kalogirou, S.A.: Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30(3), 231–295 (2004)

    Article  Google Scholar 

  17. Farhana, K., Kadirgama, K., Rahman, M., Ramasamy, D., Noor, M., Najafi, G., et al.: Improvement in the performance of solar collectors with nanofluids—a state-of-the-art review. Nano-Struct. Nano-Objects 18, 100276 (2019)

    Article  Google Scholar 

  18. Khan, M.M.A., Ibrahim, N.I., Mahbubul, I., Ali, H.M., Saidur, R., Al-Sulaiman, F.A.: Evaluation of solar collector designs with integrated latent heat thermal energy storage: a review. Sol. Energy 166, 334–350 (2018)

    Article  Google Scholar 

  19. Yılmaz, İH., Mwesigye, A.: Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review. Appl. Energy 225, 135–174 (2018)

    Article  Google Scholar 

  20. Caliskan, H.: Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors. Renew. Sustain. Energy Rev. 69, 488–492 (2017)

    Article  Google Scholar 

  21. Suman, S., Khan, M.K., Pathak, M.: Performance enhancement of solar collectors—a review. Renew. Sustain. Energy Rev. 49, 192–210 (2015)

    Article  Google Scholar 

  22. Tagliafico, L.A., Scarpa, F., De Rosa, M.: Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors—a review. Renew. Sustain. Energy Rev. 30, 526–537 (2014)

    Article  Google Scholar 

  23. Kumar, A., Sharma, M., Thakur, P., Thakur, V.K., Rahatekar, S.S., Kumar, R.: A review on exergy analysis of solar parabolic collectors. Sol. Energy 197, 411–432 (2020)

    Article  Google Scholar 

  24. Shafieian, A., Khiadani, M., Nosrati, A.: Theoretical modelling approaches of heat pipe solar collectors in solar systems: a comprehensive review. Sol. Energy 193, 227–243 (2019)

    Article  Google Scholar 

  25. Kalogirou, S.A., Karellas, S., Braimakis, K., Stanciu, C., Badescu, V.: Exergy analysis of solar thermal collectors and processes. Prog. Energy Combust. Sci. 56, 106–137 (2016)

    Article  Google Scholar 

  26. Lawal, D.U., Qasem, N.A.: Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: a critical review. Renew. Sustain. Energy Rev. 125, 109817 (2020)

    Article  Google Scholar 

  27. Buker, M.S., Riffat, S.B.: Solar assisted heat pump systems for low temperature water heating applications: a systematic review. Renew. Sustain. Energy Rev. 55, 399–413 (2016)

    Article  Google Scholar 

  28. Jamali, D.H., Noorpoor, A.: Optimization of a novel solar-based multi-generation system for waste heat recovery in a cement plant. J. Clean. Prod. 240, 117825 (2019)

    Article  Google Scholar 

  29. Vijayavenkataraman, S., Iniyan, S., Goic, R.: A review of solar drying technologies. Renew. Sustain. Energy Rev. 16(5), 2652–2670 (2012)

    Article  Google Scholar 

  30. Noorpoor, A., Hamedi Jamali, D., Hashemian, N.: Optimization of parabolic trough solar collectors integrated with two stage Rankine cycle. J. Solar Energy Res. 2(2), 61–66 (2017)

    Google Scholar 

  31. Sengupta, D.: Incorporating low grade energy recovery in process integrated systems. Curr. Opin. Chem. Eng. 17, 54–60 (2017)

    Article  Google Scholar 

  32. Banout, J., Ehl, P.: Using a Double-pass solar drier for drying of bamboo shoots. J. Agric. Rural Dev. Trop. Subtropics 111(2), 119–127 (2010)

    Google Scholar 

  33. Basunia, M., Al-Handali, H., Al-Balushi, M., Rahman, M., Mahgoub, O.: Drying of fish sardines in Oman using solar tunnel dryers. J. Agric. Sci. Technol. B 1, 108–114 (2011)

    Google Scholar 

  34. Yahya, M.: Uji kinerja alat pengering lorong berbantuan pompa kalor untuk mengeringkan biji kakao. Jurnal Teknik Mesin 3(1) (2013)

  35. Fudholi, A., Othman, M.Y., Ruslan, M.H., Sopian, K. Drying of Malaysian Capsicum annuum L. (red chili) dried by open and solar drying. Int. J. Photoenergy 2013 (2013)

  36. Fudholi, A., Sopian, K., Yazdi, M.H., Ruslan, M.H., Gabbasa, M., Kazem, H.A.: Performance analysis of solar drying system for red chili. Sol. Energy 99, 47–54 (2014)

    Article  Google Scholar 

  37. Yahya, M.: Rancang bangun dan kaji eksperimental unjuk kerja pengering surya terintegrasi dengan tungku biomassa untuk mengeringkan hasil-hasil pertanian. Jurnal Ipteks Terapan 9(1) (2017)

  38. Murali, S., Amulya, P., Alfiya, P., Delfiya, D.A., Samuel, M.P.: Design and performance evaluation of solar-LPG hybrid dryer for drying of shrimps. Renew. Energy 147, 2417–2428 (2020)

    Article  Google Scholar 

  39. Ekka, J.P., Bala, K., Muthukumar, P., Kanaujiya, D.K.: Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates. Renew. Energy 152, 55–66 (2020)

    Article  Google Scholar 

  40. Michael, J.J., Selvarasan, I.: Economic analysis and environmental impact of flat plate roof mounted solar energy systems. Sol. Energy 142, 159–170 (2017)

    Article  Google Scholar 

  41. Nájera-Trejo, M., Martin-Domínguez, I.R., Escobedo-Bretado, J.A.: Economic feasibility of flat plate vs evacuated tube solar collectors in a combisystem. Energy Procedia. 91, 477–485 (2016)

    Article  Google Scholar 

  42. Fu, Y., Liu, X., Yuan, Z.: Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China. J. Clean. Prod. 86, 180–190 (2015)

    Article  Google Scholar 

  43. Asadi, J., Amani, P., Amani, M., Kasaeian, A., Bahiraei, M.: Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors. Energy Convers. Manag. 173, 715–727 (2018)

    Article  Google Scholar 

  44. Druck, H., Heidemann, W., Muller-Steinhagen, H. Comparison test of thermal solar systems for domestic hot water preparation and space heating. In: Conference Comparison Test of Thermal Solar Systems for Domestic Hot Water Preparation and Space Heating, pp. 20–23

  45. Sokhansefat, T., Kasaeian, A., Rahmani, K., Heidari, A.H., Aghakhani, F., Mahian, O.: Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions. Renew. Energy 115, 501–508 (2018)

    Article  Google Scholar 

  46. Pandey, K.M., Chaurasiya, R.: A review on analysis and development of solar flat plate collector. Renew. Sustain. Energy Rev. 67, 641–650 (2017)

    Article  Google Scholar 

  47. Kalogirou, S.: The potential of solar industrial process heat applications. Appl. Energy 76(4), 337–361 (2003)

    Article  Google Scholar 

  48. Handbook A: HVAC Applications. American Society of Heating. Refrigeration and Air Conditioning Engineers Atlanta, USA (1995)

  49. Schweiger, H., Oliva, A., Pérez, M.C. Optimization of solar thermal absorber elements with transparent insulation (1997)

  50. Späte, F., Hafner, B., Schwarzer, K.: A system for solar process heat for decentralized applications in developing countries (1999)

  51. Yousefi, T., Shojaeizadeh, E., Veysi, F., Zinadini, S.: An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Sol. Energy 86(2), 771–779 (2012)

    Article  Google Scholar 

  52. Ingle, P., Pawar, A., Deshmukh, B., Bhosale, K.: CFD analysis of solar flat plate collector. Int. J. Emerg. Technol. Adv. Eng. 3(4), 337–342 (2013)

    Google Scholar 

  53. Jyothi, J., Chaliyawala, H., Srinivas, G., Nagaraja, H., Barshilia, H.C.: Design and fabrication of spectrally selective TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO tandem absorber for high-temperature solar thermal power applications. Sol. Energy Mater. Sol. Cells 140, 209–216 (2015)

    Article  Google Scholar 

  54. Martinopoulos, G., Missirlis, D., Tsilingiridis, G., Yakinthos, K., Kyriakis, N.: CFD modeling of a polymer solar collector. Renew. Energy 35(7), 1499–1508 (2010)

    Article  Google Scholar 

  55. Zayed, M.E., Zhao, J., Elsheikh, A.H., Du, Y., Hammad, F.A., Ma, L., et al.: Performance augmentation of flat plate solar water collector using phase change materials and nanocomposite phase change materials: a review. Process Saf. Environ. Prot. 128, 135–157 (2019)

    Article  Google Scholar 

  56. Azzolin, M., Mariani, A., Moro, L., Tolotto, A., Toninelli, P., Del Col, D.: Mathematical model of a thermosyphon integrated storage solar collector. Renew. Energy 128, 400–415 (2018)

    Article  Google Scholar 

  57. Kabeel, A., Khalil, A., Shalaby, S., Zayed, M.: Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Convers. Manag. 113, 264–272 (2016)

    Article  Google Scholar 

  58. Muhammad, M.J., Muhammad, I.A., Sidik, N.A.C., Yazid, M.N.A.W.M.: Thermal performance enhancement of flat-plate and evacuated tube solar collectors using nanofluid: a review. Int. Commun. Heat Mass Transf. 76, 6–15 (2016)

    Article  Google Scholar 

  59. Chandrasekar, M., Suresh, S., Senthilkumar, T.: Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids—a review. Renew. Sustain. Energy Rev. 16(6), 3917–3938 (2012)

    Article  Google Scholar 

  60. Lee, J.-H., Hwang, K.S., Jang, S.P., Lee, B.H., Kim, J.H., Choi, S.U., et al.: Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transf. 51(11–12), 2651–2656 (2008)

    Article  Google Scholar 

  61. Masuda, H., Ebata, A., Teramae, K.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles (1993)

  62. Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125(4), 567–574 (2003)

    Article  Google Scholar 

  63. Yeh, H.-M., Lin, T.-T.: The effect of collector aspect ratio on the collector efficiency of flat-plate solar air heaters. Energy 20(10), 1041–1047 (1995)

    Article  Google Scholar 

  64. Alvarez, G., Arce, J., Lira, L., Heras, M.R.: Thermal performance of an air solar collector with an absorber plate made of recyclable aluminum cans. Sol. Energy 77(1), 107–113 (2004)

    Article  Google Scholar 

  65. Kalogirou, S., Tripanagnostopoulos, Y., Souliotis, M.: Performance of solar systems employing collectors with colored absorber. Energy Build. 37(8), 824–835 (2005)

    Article  Google Scholar 

  66. Yousefi, T., Veysi, F., Shojaeizadeh, E., Zinadini, S.: An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 39(1), 293–298 (2012)

    Article  Google Scholar 

  67. Yousefi, T., Veisy, F., Shojaeizadeh, E., Zinadini, S.: An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors. Exp. Therm. Fluid Sci. 39, 207–212 (2012)

    Article  Google Scholar 

  68. Colangelo, G., Favale, E., de Risi, A., Laforgia, D.: A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids. Appl. Energy 111, 80–93 (2013)

    Article  Google Scholar 

  69. Qin, L., Furbo, S. Solar heating systems with evacuated tubular solar collector. In: Conference Solar Heating Systems with Evacuated Tubular Solar Collector

  70. Morrison, G., Budihardjo, I., Behnia, M.: Water-in-glass evacuated tube solar water heaters. Sol. Energy 76(1–3), 135–140 (2004)

    Article  Google Scholar 

  71. Grass, C., Benz, N., Hacker, Z., Timinger, A.: Tube collector with integrated tracking parabolic concentrator. In: Conference Tube Collector with Integrated Tracking Parabolic Concentrator, p. 327

  72. Tripanagnostopoulos, Y., Yianoulis, P., Papaefthimiou, S., Zafeiratos, S.: CPC solar collectors with flat bifacial absorbers. Sol. Energy 69(3), 191–203 (2000)

    Article  Google Scholar 

  73. Zubriski, S.E., Dick, K.: Measurement of the efficiency of evacuated tube solar collectors under various operating conditions. Journal of Green Building. 7(3), 114–130 (2012)

    Article  Google Scholar 

  74. Han, J.-F., Tian, R., Yan, S.-Y.: Comparative analysis of the instantaneous efficiency about two types of solar collector. Energy Eng. 2 (2009)

  75. Li, Z., Chen, C., Luo, H., Zhang, Y., Xue, Y.: All-glass vacuum tube collector heat transfer model used in forced-circulation solar water heating system. Sol. Energy 84(8), 1413–1421 (2010)

    Article  Google Scholar 

  76. Jack, S., Katenbrink, N., Schubert, F.: Evaluation methods for heat pipes in solar thermal collectors—test equipment and first results. In: Conference Evaluation Methods for Heat Pipes in Solar Thermal Collectors—Test Equipment and First Results, vol. 28

  77. Mosleh, H.J., Mamouri, S.J., Shafii, M., Sima, A.H.: A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector. Energy Convers. Manag. 99, 141–150 (2015)

    Article  Google Scholar 

  78. Kumar, S., Dubey, A., Tiwari, G.: A solar still augmented with an evacuated tube collector in forced mode. Desalination 347, 15–24 (2014)

    Article  Google Scholar 

  79. Bracamonte, J., Parada, J., Dimas, J., Baritto, M.: Effect of the collector tilt angle on thermal efficiency and stratification of passive water in glass evacuated tube solar water heater. Appl. Energy 155, 648–659 (2015)

    Article  Google Scholar 

  80. Chopra, K., Tyagi, V., Pandey, A., Sari, A.: Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications. Appl. Energy 228, 351–389 (2018)

    Article  Google Scholar 

  81. Winston, R.: Principles of solar concentrators of a novel design. Sol. Energy 16(2), 89–95 (1974)

    Article  Google Scholar 

  82. Rabl, A.: Optical and thermal properties of compound parabolic concentrators. Sol. Energy 18(6), 497–511 (1976)

    Article  Google Scholar 

  83. McIntire, W.: Optimization of stationary nonimaging reflectors for tubular evacuated receivers aligned north-south. Sol. Energy 24(2), 169–175 (1980)

    Article  Google Scholar 

  84. Mills, D.R., Giutronich, J.E.: Asymmetrical non-imaging cylindrical solar concentrators. Sol. Energy 20(1), 45–55 (1978)

    Article  Google Scholar 

  85. O’Gallagher, J.J.: Nonimaging optics in solar energy. Synth. Lectures Energy Environ. Technol. Sci. Soc. 2(1), 1–120 (2008)

    Google Scholar 

  86. Rönnelid, M., Perers, B., Karlsson, B.: Construction and testing of a large-area CPC-collector and comparison with a flat plate collector. Sol. Energy 57(3), 177–184 (1996)

    Article  Google Scholar 

  87. Ogallagher, J., Snail, K., Winston, R., Peek, C., Garrison, J.: A new evacuated CPC collector tube. Sol. Energy 29, 575–577 (1982)

    Article  Google Scholar 

  88. Tripanagnostopoulos, Y., Yianoulis, P.: CPC solar collectors with multichannel absorber. Sol. Energy 58(1–3), 49–61 (1996)

    Article  Google Scholar 

  89. Tripanagnostopoulos, Y., Yianoulis, P., Papaefthimiou, S., Souliotis, M., Nousia, T.: Cost effective asymmetric CPC solar collectors. Renew. Energy 16(1–4), 628–631 (1999)

    Article  Google Scholar 

  90. Carvalho, M., Collares-Pereira, M., de Oliveira, J.C., Mendes, J.F., Haberle, A., Wittwer, V.: Optical and thermal testing of a new 1.12 X CPC solar collector. Solar Energy Mater. Solar Cells 37(2), 175–190 (1995)

    Article  Google Scholar 

  91. Pei, G., Li, G., Zhou, X., Ji, J., Su, Y.: Comparative experimental analysis of the thermal performance of evacuated tube solar water heater systems with and without a mini-compound parabolic concentrating (CPC) reflector (C < 1). Energies 5(4), 911–924 (2012)

    Article  Google Scholar 

  92. Kim, Y.S., Balkoski, K., Jiang, L., Winston, R.: Efficient stationary solar thermal collector systems operating at a medium-temperature range. Appl. Energy 111, 1071–1079 (2013)

    Article  Google Scholar 

  93. Wang, P.-Y., Guan, H.-Y., Liu, Z.-H., Wang, G.-S., Zhao, F., Xiao, H.-S.: High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger. Energy Convers. Manag. 77, 315–323 (2014)

    Article  Google Scholar 

  94. Widyolar, B., Jiang, L., Ferry, J., Winston, R.: Non-tracking East–West XCPC solar thermal collector for 200 celsius applications. Appl. Energy 216, 521–533 (2018)

    Article  Google Scholar 

  95. Winston, R., Jiang, L., Widyolar, B.: Performance of a 23KW solar thermal cooling system employing a double effect absorption chiller and thermodynamically efficient non-tracking concentrators. Energy Procedia 48, 1036–1046 (2014)

    Article  Google Scholar 

  96. Ustaoglu, A., Alptekin, M., Okajima, J., Maruyama, S.: Evaluation of uniformity of solar illumination on the receiver of compound parabolic concentrator (CPC). Sol. Energy 132, 150–164 (2016)

    Article  Google Scholar 

  97. Lu, Z., Wang, R., Xia, Z., Lu, X., Yang, C., Ma, Y., et al.: Study of a novel solar adsorption cooling system and a solar absorption cooling system with new CPC collectors. Renew. Energy 50, 299–306 (2013)

    Article  Google Scholar 

  98. Sobhansarbandi, S., Atikol, U.: Performance of flat-plate and compound parabolic concentrating solar collectors in underfloor heating systems. J. Solar Energy Eng. 137(3), 034501 (2015)

    Article  Google Scholar 

  99. Tian, Y., Zhao, C.-Y.: A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 104, 538–553 (2013)

    Article  Google Scholar 

  100. Zhou, F., Ji, J., Yuan, W., Zhao, X., Huang, S.: Study on the PCM flat-plate solar collector system with antifreeze characteristics. Int. J. Heat Mass Transf. 129, 357–366 (2019)

    Article  Google Scholar 

  101. Allouhi, A., Amine, M.B., Buker, M., Kousksou, T., Jamil, A.: Forced-circulation solar water heating system using heat pipe-flat plate collectors: energy and exergy analysis. Energy 180, 429–443 (2019)

    Article  Google Scholar 

  102. Balaji, K., Kumar, P.G., Sakthivadivel, D., Vigneswaran, V., Iniyan, S.: Experimental investigation on flat plate solar collector using frictionally engaged thermal performance enhancer in the absorber tube. Renew. Energy 142, 62–72 (2019)

    Article  Google Scholar 

  103. Sakhaei, S.A., Valipour, M.S.: Performance enhancement analysis of the flat plate collectors: a comprehensive review. Renew. Sustain. Energy Rev. 102, 186–204 (2019)

    Article  Google Scholar 

  104. Frank, G., Kauer, E., Köstlin, H., Schmitte, F.: Transparent heat-reflecting coatings for solar applications based on highly doped tin oxide and indium oxide. Solar Energy Mater. 8(4), 387–398 (1983)

    Article  Google Scholar 

  105. Goodman, R., Menke, A.: Effect of cover plate treatment on efficiency of solar collectors. Sol. Energy 17(4), 207–211 (1975)

    Article  Google Scholar 

  106. Ferahta, F., Bougoul, S., Médale, M., Abid, C.: Influence of the air gap layer thickness on heat transfer between the glass cover and the absorber of a solar collector. Fluid Dyn. Mater. Process. 8(3), 339–351 (2012)

    Google Scholar 

  107. Nahar, N., Garg, H.: Free convection and shading due to gap spacing between an absorber plate and the cover glazing in solar energy flat-plate collectors. Appl. Energy 7(1–3), 129–145 (1980)

    Article  Google Scholar 

  108. Nahar, N., Gupta, M.P.: Studies on gap spacing between absorber and cover glazing in flat plate solar collectors. Int. J. Energy Res. 13(6), 727–732 (1989)

    Article  Google Scholar 

  109. Martín, R.H., Pérez-García, J., García, A., García-Soto, F., López-Galiana, E.: Simulation of an enhanced flat-plate solar liquid collector with wire-coil insert devices. Sol. Energy 85(3), 455–469 (2011)

    Article  Google Scholar 

  110. Huertas, A., Solano, J., Garcia, A., Herrero-Martín, R., Pérez-García, J.: Tube-side heat transfer enhancement in flat-plate liquid solar collectors with wire coil inserts. Exp. Heat Transf. 30(1), 1–10 (2017)

    Article  Google Scholar 

  111. Sundar, L.S., Singh, M.K., Punnaiah, V., Sousa, A.C.: Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts. Renew. Energy 119, 820–833 (2018)

    Article  Google Scholar 

  112. Farshad, S.A., Sheikholeslami, M.: Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew. Energy 141, 246–258 (2019)

    Article  Google Scholar 

  113. García, A., Herrero-Martin, R., Solano, J., Pérez-García, J.: The role of insert devices on enhancing heat transfer in a flat-plate solar water collector. Appl. Therm. Eng. 132, 479–489 (2018)

    Article  Google Scholar 

  114. Abdullahi, B., Al-Dadah, R., Mahmoud, S., Hood, R.: Optical and thermal performance of double receiver compound parabolic concentrator. Appl. Energy 159, 1–10 (2015)

    Article  Google Scholar 

  115. Garg, H., Chakravertty, S.: Thermal analysis of an evacuated tube collector module. Sol. Wind Technol. 5(5), 525–531 (1988)

    Article  Google Scholar 

  116. Naphon, P.: Effect of porous media on the performance of the double-pass flat plate solar air heater. Int. Commun. Heat Mass Transf. 32(1–2), 140–150 (2005)

    Article  Google Scholar 

  117. Sopian, K., Alghoul, M., Alfegi, E.M., Sulaiman, M., Musa, E.: Evaluation of thermal efficiency of double-pass solar collector with porous–nonporous media. Renew. Energy 34(3), 640–645 (2009)

    Article  Google Scholar 

  118. Huang, P.-C., Chen, C.-C., Hwang, H.-Y.: Thermal enhancement in a flat-plate solar water collector by flow pulsation and metal-foam blocks. Int. J. Heat Mass Transf. 61, 696–720 (2013)

    Article  Google Scholar 

  119. Ghoneim, A.: Performance optimization of solar collector equipped with different arrangements of square-celled honeycomb. Int. J. Therm. Sci. 44(1), 95–105 (2005)

    Article  Google Scholar 

  120. Abdullah, A., Abou-Ziyan, H., Ghoneim, A.: Thermal performance of flat plate solar collector using various arrangements of compound honeycomb. Energy Convers. Manag. 44(19), 3093–3112 (2003)

    Article  Google Scholar 

  121. Hollands, K.: Honeycomb devices in flat-plate solar collectors. Sol. Energy 9(3), 159–164 (1965)

    Article  Google Scholar 

  122. Fan, M., You, S., Gao, X., Zhang, H., Li, B., Zheng, W., et al.: A comparative study on the performance of liquid flat-plate solar collector with a new V-corrugated absorber. Energy Convers. Manag. 184, 235–248 (2019)

    Article  Google Scholar 

  123. Karim, M.A., Hawlader, M.: Performance investigation of flat plate, v-corrugated and finned air collectors. Energy 31(4), 452–470 (2006)

    Article  Google Scholar 

  124. Dović, D., Andrassy, M.: Numerically assisted analysis of flat and corrugated plate solar collectors thermal performances. Sol. Energy 86(9), 2416–2431 (2012)

    Article  Google Scholar 

  125. Saha, S.N.: Investigation of thermal performance of double flow corrugated absorber solar air heaters: NIT Jamshedpur (2018)

  126. Pottler, K., Sippel, C.M., Beck, A., Fricke, J.: Optimized finned absorber geometries for solar air heating collectors. Sol. Energy 67(1–3), 35–52 (1999)

    Article  Google Scholar 

  127. Moummi, N., Youcef-Ali, S., Moummi, A., Desmons, J.: Energy analysis of a solar air collector with rows of fins. Renew. Energy 29(13), 2053–2064 (2004)

    Article  Google Scholar 

  128. Priyam, A., Chand, P.: Effect of wavelength and amplitude on the performance of wavy finned absorber solar air heater. Renew. Energy 119, 690–702 (2018)

    Article  Google Scholar 

  129. Deeyoko, L.A.J., Balaji, K., Iniyan, S., Sharmeela, C.: Exergy, economics and pumping power analyses of flat plate solar water heater using thermal performance enhancer in absorber tube. Appl. Therm. Eng. 154, 726–737 (2019)

    Article  Google Scholar 

  130. Alghoul, M., Sulaiman, M., Azmi, B., Wahab, M.A.: Review of materials for solar thermal collectors. Anti-Corros. Methods Mater. 52(4), 199–206 (2005)

    Article  Google Scholar 

  131. Abuşka, M., Şevik, S., Kayapunar, A.: Experimental analysis of solar air collector with PCM-honeycomb combination under the natural convection. Sol. Energy Mater. Sol. Cells 195, 299–308 (2019)

    Article  Google Scholar 

  132. Li, B., Zhai, X., Cheng, X.: Experimental and numerical investigation of a solar collector/storage system with composite phase change materials. Sol. Energy 164, 65–76 (2018)

    Article  Google Scholar 

  133. Palacio, M., Carmona, M.: Experimental evaluation of a latent heat thermal storage unit integrated into a flat plate solar collector as temperature stabilizer. In: Conference Experimental Evaluation of a Latent Heat Thermal Storage Unit Integrated into a Flat Plate Solar Collector as Temperature Stabilizer. IEEE, pp. 83–87

  134. Taylor, R.A., Otanicar, T., Rosengarten, G.: Nanofluid-based optical filter optimization for PV/T systems. Light Sci. Appl. 1(10), 34 (2012)

    Article  Google Scholar 

  135. Khullar, V., Tyagi, H., Hordy, N., Otanicar, T.P., Hewakuruppu, Y., Modi, P., et al.: Harvesting solar thermal energy through nanofluid-based volumetric absorption systems. Int. J. Heat Mass Transf. 77, 377–384 (2014)

    Article  Google Scholar 

  136. Moradi, A., Sani, E., Simonetti, M., Francini, F., Chiavazzo, E., Asinari, P.: Carbon-nanohorn based nanofluids for a direct absorption solar collector for civil application. J. Nanosci. Nanotechnol. 15(5), 3488–3495 (2015)

    Article  Google Scholar 

  137. Verma, S.K., Tiwari, A.K.: Progress of nanofluid application in solar collectors: a review. Energy Convers. Manag. 100, 324–346 (2015)

    Article  Google Scholar 

  138. Sharafeldin, M., Gróf, G.: Experimental investigation of flat plate solar collector using CeO2-water nanofluid. Energy Convers. Manag. 155, 32–41 (2018)

    Article  Google Scholar 

  139. Mondragón, R., Sánchez, D., Cabello, R., Llopis, R., Juliá, J.E.: Flat plate solar collector performance using alumina nanofluids: experimental characterization and efficiency tests. PLoS ONE 14(2), e0212260 (2019)

    Article  Google Scholar 

  140. Sabiha, M., Saidur, R., Mekhilef, S., Mahian, O.: Progress and latest developments of evacuated tube solar collectors. Renew. Sustain. Energy Rev. 51, 1038–1054 (2015)

    Article  Google Scholar 

  141. Sharma, N., Diaz, G.: Performance model of a novel evacuated-tube solar collector based on minichannels. Sol. Energy 85(5), 881–890 (2011)

    Article  Google Scholar 

  142. Tang, R., Yang, Y., Gao, W.: Comparative studies on thermal performance of water-in-glass evacuated tube solar water heaters with different collector tilt-angles. Sol. Energy 85(7), 1381–1389 (2011)

    Article  Google Scholar 

  143. Dabra, V., Yadav, L., Yadav, A.: The effect of tilt angle on the performance of evacuated tube solar air collector: experimental analysis. Int. J. Eng. Sci. Technol. 5(4), 100–110 (2013)

    Article  Google Scholar 

  144. Gao, Y., Fan, R., Zhang, X., An, Y., Wang, M., Gao, Y., et al.: Thermal performance and parameter analysis of a U-pipe evacuated solar tube collector. Sol. Energy 107, 714–727 (2014)

    Article  Google Scholar 

  145. Wang, T.-Y., Zhao, Y.-H., Diao, Y.-H., Ren, R.-Y., Wang, Z.-Y.: Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays. Energy 177, 16–28 (2019)

    Article  Google Scholar 

  146. Huang, X., Wang, Q., Yang, H., Zhong, S., Jiao, D., Zhang, K., et al.: Theoretical and experimental studies of impacts of heat shields on heat pipe evacuated tube solar collector. Renew. Energy 138, 999–1009 (2019)

    Article  Google Scholar 

  147. Tian, M., Su, Y., Zheng, H., Pei, G., Li, G., Riffat, S.: A review on the recent research progress in the compound parabolic concentrator (CPC) for solar energy applications. Renew. Sustain. Energy Rev. 82, 1272–1296 (2018)

    Article  Google Scholar 

  148. Natividade, P.S.G., de Moraes Moura, G., Avallone, E., Bandarra Filho, E.P., Gelamo, R.V., Gonçalves, J.C.D.S.I.: Experimental analysis applied to an evacuated tube solar collector equipped with parabolic concentrator using multilayer graphene-based nanofluids. Renew. Energy 138, 152–160 (2019)

    Article  Google Scholar 

  149. Papadimitratos, A., Sobhansarbandi, S., Pozdin, V., Zakhidov, A., Hassanipour, F.: Evacuated tube solar collectors integrated with phase change materials. Sol. Energy 129, 10–19 (2016)

    Article  Google Scholar 

  150. Feliński, P., Sekret, R.: Effect of a low cost parabolic reflector on the charging efficiency of an evacuated tube collector/storage system with a PCM. Sol. Energy 144, 758–766 (2017)

    Article  Google Scholar 

  151. Korres, D., Tzivanidis, C.: A new mini-CPC with a U-type evacuated tube under thermal and optical investigation. Renew. Energy 128, 529–540 (2018)

    Article  Google Scholar 

  152. Lu, L., Liu, Z.-H., Xiao, H.-S.: Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors: Part 1: indoor experiment. Sol. Energy 85(2), 379–387 (2011)

    Article  Google Scholar 

  153. Sabiha, M., Saidur, R., Hassani, S., Said, Z., Mekhilef, S.: Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Convers. Manag. 105, 1377–1388 (2015)

    Article  Google Scholar 

  154. Mahbubul, I., Khan, M.M.A., Ibrahim, N.I., Ali, H.M., Al-Sulaiman, F.A., Saidur, R.: Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renew. Energy 121, 36–44 (2018)

    Article  Google Scholar 

  155. Hsieh, C.: Thermal analysis of CPC collectors. Sol. Energy 27(1), 19–29 (1981)

    Article  MathSciNet  Google Scholar 

  156. Bellos, E., Tzivanidis, C.: A review of concentrating solar thermal collectors with and without nanofluids. J. Therm. Anal. Calorim. 135(1), 763–786 (2019)

    Article  Google Scholar 

  157. Bellos, E., Tzivanidis, C., Antonopoulos, K.A.: Optical performance and optimization of two stationary compound parabolic collectors (CPC). In: Conference Optical Performance and Optimization of Two Stationary Compound Parabolic Collectors (CPC)

  158. Khalifa, A.-J.N., Al-Mutawalli, S.S.: Effect of two-axis sun tracking on the performance of compound parabolic concentrators. Energy Convers. Manag. 39(10), 1073–1079 (1998)

    Article  Google Scholar 

  159. Kim, Y., Han, G., Seo, T.: An evaluation on thermal performance of CPC solar collector. Int. Commun. Heat Mass Transf. 35(4), 446–457 (2008)

    Article  Google Scholar 

  160. Wang, Y., Zhu, Y., Chen, H., Zhang, X., Yang, L., Liao, C.: Performance analysis of a novel sun-tracking CPC heat pipe evacuated tubular collector. Appl. Therm. Eng. 87, 381–388 (2015)

    Article  Google Scholar 

  161. Aguilar-Jimenez, J., Velazquez, N., Acuna, A., Lopez-Zavala, R., Gonzalez-Uribe, L.: Effect of orientation of a CPC with concentric tube on efficiency. Appl. Therm. Eng. 130, 221–229 (2018)

    Article  Google Scholar 

  162. Ratismith, W., Inthongkhum, A., Briggs, J.: Two non-tracking solar collectors: design criteria and performance analysis. Appl. Energy 131, 201–210 (2014)

    Article  Google Scholar 

  163. Li, G., Su, Y., Pei, G., Yu, X., Ji, J., Riffat, S.: Preliminary experimental comparison of the performance of a novel lens-walled compound parabolic concentrator (CPC) with the conventional mirror and solid CPCs. Int. J. Green Energy 10(8), 848–859 (2013)

    Article  Google Scholar 

  164. Guiqiang, L., Gang, P., Yuehong, S., Yunyun, W., Jie, J.: Design and investigation of a novel lens-walled compound parabolic concentrator with air gap. Appl. Energy 125, 21–27 (2014)

    Article  Google Scholar 

  165. Li, G., Pei, G., Ji, J., Su, Y., Zhou, H., Cai, J.: Structure optimization and annual performance analysis of the lens-walled compound parabolic concentrator. Int. J. Green Energy 13(9), 944–950 (2016)

    Article  Google Scholar 

  166. Tiruneh, A.T., Ndlela, W.N., Gadaga, T.H., Debesay, T., Heikkilä, J.: A four-wing compound parabolic concentrator (CPC) design for heating and sanitization of waste products. J. Power Energy Eng. 5(03), 18 (2017)

    Article  Google Scholar 

  167. Sellami, N., Mallick, T.K.: Optical efficiency study of PV crossed compound parabolic concentrator. Appl. Energy 102, 868–876 (2013)

    Article  Google Scholar 

  168. Korres, D.N., Tzivanidis, C.: A Symmetric and an Asymmetric Mini Compound Parabolic Collector Under Optical Investigation. The Role of Exergy in Energy and the Environment, pp. 649–661. Springer, Berlin (2018)

    Google Scholar 

  169. Korres, D., Tzivanidis, C.: Numerical investigation and optimization of an experimentally analyzed solar CPC. Energy 172, 57–67 (2019)

    Article  Google Scholar 

  170. Waghmare, S.A., Gulhane, N.P.: Design configurations and possibilities of reflector shape for solar compound parabolic collector by ray tracing simulation. Optik 176, 315–323 (2019)

    Article  Google Scholar 

  171. Zhu, T.-T., Diao, Y.-H., Zhao, Y.-H., Li, F.-F.: Thermal performance of a new CPC solar air collector with flat micro-heat pipe arrays. Appl. Therm. Eng. 98, 1201–1213 (2016)

    Article  Google Scholar 

  172. Nkwetta, D.N., Smyth, M.: Performance analysis and comparison of concentrated evacuated tube heat pipe solar collectors. Appl. Energy 98, 22–32 (2012)

    Article  Google Scholar 

  173. Oommen, R., Jayaraman, S.: Development and performance analysis of compound parabolic solar concentrators with reduced gap losses–oversized reflector. Energy Convers. Manag. 42(11), 1379–1399 (2001)

    Article  Google Scholar 

  174. Chen, X., Jiang, J., Li, K., Tian, S., Yan, F.: Energy-efficient biogas reforming process to produce syngas: the enhanced methane conversion by O2. Appl. Energy 185, 687–697 (2017)

    Article  Google Scholar 

  175. Zhao, C., Wang, Y., Li, M., Du, W.: Heat transfer performance investigation on a finned tube adsorbent bed with a compound parabolic concentrator (CPC) for solar adsorption refrigeration. Appl. Therm. Eng. 152, 391–401 (2019)

    Article  Google Scholar 

  176. Liu, Z.-H., Hu, R.-L., Lu, L., Zhao, F., Xiao, H.-S.: Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector. Energy Convers. Manag. 73, 135–143 (2013)

    Article  Google Scholar 

  177. Sadeghiazad, M.M., Yahou, S. Progress in solar energy and engineering systems. Journal homepage: http://iieta.org/Journals/PSEES1(1), 10–16 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Table 6.

Table 6 Approximated costs associated with commercial solar collectors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, A., Ehyaei, M.A., Doustgani, A. et al. Recent progress in thermal and optical enhancement of low temperature solar collector. Energy Syst 14, 1–40 (2023). https://doi.org/10.1007/s12667-021-00473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-021-00473-5

Keywords

Navigation