Skip to main content

Advertisement

Log in

A critical review of energy storage technologies for microgrids

  • Review Article
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Energy storage plays an essential role in modern power systems. The increasing penetration of renewables in power systems raises several challenges about coping with power imbalances and ensuring standards are maintained. Backup supply and resilience are also current concerns. Energy storage systems also provide ancillary services to the grid, like frequency regulation, peak shaving, and energy arbitrage. There are several technologies for storing energy at different development stages, but there are both benefits and drawbacks in how each one is suited to determining particular situations. Thus, the most suitable solution depends on each case. This paper provides a critical review of the existing energy storage technologies, focusing mainly on mature technologies. Their feasibility for microgrids is investigated in terms of cost, technical benefits, cycle life, ease of deployment, energy and power density, cycle life, and operational constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. da Silva, A.C.: Utilização de sistemas de armazenamento de energia para melhoria das condições de estabilidade de redes isoladas (2015)

  2. IRENA: Electricity storage and renewables: Costs and markets to 2030. Technical report, International Renewable Energy Agency (2017)

  3. SANDIA: Energy storage exchange. Technical report, Sandia National Laboratories (2020)

  4. Fuchs, G., Lunz, B., Saue, D., Leuthold, M., Sauer, D.U.: Technology overview on electricity storage - overview on the potential and on the deployment perspectives of electricity storage technologies. Technical report, ISEA-SEFEP (2012)

  5. World Energy Council: Energy storage monitor: Latest trends in energy storage - 2019. Technical report, World Energy Council (nov 2019)

  6. Schmidt, O., Melchior, S., Hawkes, A., Staffell, I.: Projecting the future levelized cost of electricity storage technologies. Joule 3(1), 81–100 (2019)

    Article  Google Scholar 

  7. Nguyen, Thu Trang, Martin, Viktoria, Malmquist, Anders, Silva, Carlos: A review on technology maturity of small scale energy storage technologies. Renewable Energy and Environmental Sustainability 2:36, 01 (2017)

  8. Ton, D.T., Smith, M.A.: The U.S. department of energy’s microgrid initiative. Electr. J. 25(8), 84–94 (2012)

    Article  Google Scholar 

  9. Santos-Pereira, Kevin, Pereira, Jefferson D. F., Vera, Leonilson S., Cosme, Diego L. S., Oliveira, Denisson Q., Saavedra, Osvaldo R.: The requirements and constraints of storage technology in isolated microgrids: a comparative analysis of lithium-ion vs. lead-acid batteries. Energy Syst., pp. 1–24 (2021)

  10. Chong, L.W., Wong, Y.W., Rajkumar, R.K., Rajkumar, R.K., Isa, D.: Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems. Renew. Sustain. Energy Rev. 66, 174–189 (2016)

    Article  Google Scholar 

  11. Farhadi, M., Mohammed, O.: Energy storage technologies for high-power applications. IEEE Trans. Ind. Appl. 52(3), 1953–1961 (2016)

    Article  Google Scholar 

  12. Oudalov, A., Cherkaoui, R., Beguin, A.: Sizing and optimal operation of battery energy storage system for peak shaving application. In: 2007 IEEE Lausanne Power Tech, pp. 621–625 (2007)

  13. Uddin, M., Romlie, M.F., Abdullah, M.F., Halim, S.A., Bakar, A.H.A., Kwang, T.C.: A review on peak load shaving strategies. Renew. Sustain. Energy Rev. 82, 3323–3332 (2018)

    Article  Google Scholar 

  14. Uddin, M., Romlie, M.F., Abdullah, M.F., Tan, C.K., Shafiullah, G.M., Bakar, A.H.A.: A novel peak shaving algorithm for islanded microgrid using battery energy storage system. Energy 196, 117084 (2020)

    Article  Google Scholar 

  15. Terlouw, T., AlSkaif, T., Bauer, C., van Sark, W.: Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies. Appl. Energy 239, 356–372 (2019)

    Article  Google Scholar 

  16. Metz, D., Saraiva, J.T.: Use of battery storage systems for price arbitrage operations in the 15- and 60-min german intraday markets. Electr. Power Syst. Res. 160, 27–36 (2018)

    Article  Google Scholar 

  17. Bhusal, N., Abdelmalak, M., Kamruzzaman, M., Benidris, M.: Power system resilience: Current practices, challenges, and future directions. IEEE Access 8, 18064–18086 (2020)

    Article  Google Scholar 

  18. Palizban, O., Kauhaniemi, K.: Energy storage systems in modern grids–matrix of technologies and applications. J. Energy Storage 6, 248–259 (2016)

    Article  Google Scholar 

  19. Poullikkas, A.: A comparative overview of large-scale battery systems for electricity storage. Renew. Sustain. Energy Rev. 27, 778–788 (2013)

    Article  Google Scholar 

  20. Nadeem, F., Hussain, S.M.S., Tiwari, P.K., Goswami, A.K., Ustun, T.S.: Comparative review of energy storage systems, their roles, and impacts on future power systems. IEEE Access 7, 4555–4585 (2019)

    Article  Google Scholar 

  21. Wang, Chunlian, Yongchao, Yu., Niu, Jiajia, Liu, Yaxuan, Bridges, Denzel, Liu, Xianqiang, Pooran, Joshi, Zhang, Yuefei, Hu, Anming.: Recent progress of metal-air batteries–a mini review. Appl. Sci. 9(14),(2019)

  22. Pathak, P.K., Gupta, A.R.: Battery energy storage system. In: 2018 4th International Conference on Computational Intelligence Communication Technology (CICT), pp. 1–9, (2018)

  23. Mukoyama, S., Nakao, K., Sakamoto, H., Matsuoka, T., Nagashima, K., Ogata, M., Yamashita, T., Miyazaki, Y., Miyazaki, K., Maeda, T., Shimizu, H.: Development of superconducting magnetic bearing for 300 kw flywheel energy storage system. IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017)

    Article  Google Scholar 

  24. Tan, K.M., Babu, T.S., Ramachandaramurthy, V.K., Kasinathan, P., Solanki, S.G., Raveendran, S.K.: Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration. J. Energy Storage 39, 102591 (2021)

    Article  Google Scholar 

  25. Amiryar, Mustafa E., Pullen, Keith R.: A review of flywheel energy storage system technologies and their applications. Appl. Sci. 7(3),(2017)

  26. Mousavi G, SM, Faraji, Faramarz, Majazi, Abbas, Al-Haddad, : A comprehensive review of flywheel energy storage system technology. Renew. Sustain. Energy Rev. 67, 477–490 (2017)

  27. Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., Ding, Y.: Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 19(3), 291–312 (2009)

    Article  Google Scholar 

  28. Mongird, K., Viswanathan, V., Balducc, P., Alam, J., Fotedar, V., Koritarov, V., Hadjerioua, B.: Energy storage technology and cost characterization report. Technical report, Hydro Wires U.S Department of Energy (2019)

  29. Bender, D.: Flywheel. Technical report, Sandia (2015)

  30. Dowling, J.A., Rinaldi, K.Z., Ruggles, T.H., Davis, S.J., Yuan, M., Tong, F., Lewis, N.S., Caldeira, K.: Role of long-duration energy storage in variable renewable electricity systems. Joule 4(9), 1907–1928 (2020)

    Article  Google Scholar 

  31. Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., Villafáfila-Robles, R.: A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 16(4), 2154–2171 (2012)

    Article  Google Scholar 

  32. Kim, Y.-M., Lee, J.-H., Kim, S.-J., Favrat, D.: Potential and evolution of compressed air energy storage: energy and exergy analyses. Entropy 14(8), 1501–1521 (2012)

    Article  MATH  Google Scholar 

  33. Wang, Jidai, Lu, Kunpeng, Ma, Lan, Wang, Jihong, Dooner, Mark, Miao, Shihong, Li, Jian, Wang, Dan: Overview of compressed air energy storage and technology development. Energies 10(7),(2017)

  34. Garche, J., Moseley, P.T.: Electrochemical Energy Storage for Renewable Sources and Grid Balancing. Elsevier, Amsterdam (2015)

    Google Scholar 

  35. Hemmati, R., Saboori, H.: Emergence of hybrid energy storage systems in renewable energy and transport applications - a review. Renew. Sustain. Energy Rev. 65, 11–23 (2016)

    Article  Google Scholar 

  36. King, M., Jain, A., Bhakar, R., Mathur, J., Wang, J.: Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in india and the uk. Renew. Sustain. Energy Rev. 139, 110705 (2021)

    Article  Google Scholar 

  37. Tallini, A., Vallati, A., Cedola, L.: Applications of micro-caes systems: Energy and economic analysis. Energy Procedia 82, 797–804 (2015). 70th Conference of the Italian Thermal Machines Engineering Association, ATI2015

  38. Rehman, S., Al-Hadhrami, L.M., Alam, M.M.: Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 44, 586–598 (2015)

    Article  Google Scholar 

  39. Argyrou, M.C., Christodoulides, P., Kalogirou, S.A.: Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renew. Sustain. Energy Rev. 94, 804–821 (2018)

    Article  Google Scholar 

  40. Matos, C.R., Carneiro, J.F., Silva, P.P.: Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification. J. Energy Storage 21, 241–258 (2019)

    Article  Google Scholar 

  41. Madlener, R., Specht, J.: An exploratory economic analysis of underground pumped-storage hydro power plants in abandoned coal mines. SSRN (2013)

  42. Menéndez, J., Ordóñez, A., Álvarez, R., Loredo, J.: Energy from closed mines: Underground energy storage and geothermal applications. Renew. Sustain. Energy Rev. 108, 498–512 (2019)

    Article  Google Scholar 

  43. Vasel-Be-Hagh, A., Carriveau, R., Ting, D.S.-K.: Energy storage using weights hydraulically lifted above ground. Int. J. Environ. Stud. 70(5), 792–799 (2013)

    Article  Google Scholar 

  44. U.S. Department of Energy: Doe oe global energy storage database (oct 2020)

  45. Beacon Power. Operating plants

  46. Shi, J., Ying, X., Liao, M., Guo, S., Li, Y., Ren, L., Su, R., Li, S., Zhou, X., Tang, Y.: Integrated design method for superconducting magnetic energy storage considering the high frequency pulse width modulation pulse voltage on magnet. Appl. Energy 248, 1–17 (2019)

    Article  Google Scholar 

  47. Lukatskaya, M.R., Dunn, B., Gogotsi, Y.: Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7(1), 12647 (2016)

    Article  Google Scholar 

  48. Parwal, A., Fregelius, M., Temiz, I., Göteman, M., de Oliveira, J.G., Boström, C., Leijon, M.: Energy management for a grid-connected wave energy park through a hybrid energy storage system. Appl. Energy 231, 399–411 (2018)

    Article  Google Scholar 

  49. Svasta, P, Negroiu, R, Al Vasile: Supercapacitors—an alternative electrical energy storage device. In: 2017 5th International Symposium on Electrical and Electronics Engineering (ISEEE), pp. 1–5. IEEE (2017)

  50. Berrada, A., Loudiyi, K.: Gravity Energy Storage. Elsevier, Amsterdam (2019)

    Book  Google Scholar 

  51. Ali, M.H., Wu, B., Dougal, R.A.: An overview of smes applications in power and energy systems. IEEE Trans. Sustain. Energy 1(1), 38–47 (2010)

    Article  Google Scholar 

  52. Breeze, P.: Power system energy storage technologies. Academic Press, Cambridge (2018)

    Google Scholar 

  53. Mishra, D.K., Panigrahi, T.K., Mohanty, A., Ray, P.K.: Effect of superconducting magnetic energy storage on two agent deregulated power system under open market. Mater. Today: Proc. 21, 1919–1929 (2020)

    Google Scholar 

  54. Soman, R., Ravindra, H., Huang, X., Schoder, K., Steurer, M., Yuan, W., Zhang, M., Venuturumilli, S., Chen, X.: Preliminary investigation on economic aspects of superconducting magnetic energy storage (smes) systems and high-temperature superconducting (hts) transformers. IEEE Trans. Appl. Supercond. 28(4), 1–5 (2018)

    Article  Google Scholar 

  55. Fu-Bao, W., Bo, Y., Ye, J.-L.: Grid-Scale Energy Storage Systems and Applications. Academic Press, Cambridge (2019)

    Google Scholar 

  56. Christensen, J.M., Hendriksen, P.V., Grunwaldt, J-D., Jensen, A.D.: Chemical energy storage. DTU International Energy Report 2013: Energy storage options for future sustainable energy systems (2013)

  57. Rosen, M.A., Koohi-Fayegh, S.: The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Environ. 1, 10–29 (2016)

    Article  Google Scholar 

  58. CGEE. Centro de gestão e estudos estratégicos

  59. Energy Storage Association (ESA). Hydrogen energy storage

  60. Abbasi, T., Abbasi, S.A.: ‘renewable’ hydrogen: Prospects and challenges. Renew. Sustain. Energy Rev. 15(6), 3034–3040 (2011)

  61. Zeng, K., Zhang, D.: Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36(3), 307–326 (2010)

    Article  Google Scholar 

  62. Green Power. Produção de hidrogênio por eletrólise

  63. Houchins, C., James, B.: Hydrogen storage system cost analysis: Summary of fy 2017 activities sponsorship and acknowledgements, 08 (2017)

  64. Lach, J., Wróbel, K., Wróbel, J., Podsadni, P., Czerwiński, A.: Applications of carbon in lead-acid batteries: a review. J. Solid State Electrochem. 23, 693–705 (2019)

    Article  Google Scholar 

  65. Keshan, H., Thornburg, J., Ustun, T.S.: Comparison of lead-acid and lithium ion batteries for stationary storage in off-grid energy systems. In: 4th IET Clean Energy and Technology Conference (CEAT 2016), pp. 1–7 (Nov 2016)

  66. Vazquez, S., Lukic, S., Galvan, E., Franquelo, L.G., Carrasco, Juan M., Leon, Jose I.: Recent advances on energy storage systems. In: IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, pp. 4636–4640 (2011)

  67. Faisal, M., Hannan, M.A., Ker, P.J., Hussain, A., Mansor, M.B., Blaabjerg, F.: Review of energy storage system technologies in microgrid applications: Issues and challenges. IEEE Access 6, 35143–35164 (2018)

    Article  Google Scholar 

  68. Bashir, N., Sardar, H.S., Nasir, M., Hassan, N.U.K., Hassan A.: Lifetime maximization of lead-acid batteries in small scale ups and distributed generation systems. In: 2017 IEEE Manchester PowerTech, pp. 1–6, (2017)

  69. Gaffar, A., Sabuj, E.H., Mostafa, F., Istiaque, T., Khan, F.: Simulink based performance analysis of lead acid batteries with the variation of load current and temperature. In: 2016 4th International Conference on the Development in the in Renewable Energy Technology (ICDRET), pp. 1–5 (2016)

  70. Svoboda, V., Wenzl, H., Kaiser, R., Jossen, A., Baring-Gould, I., Manwell, J., Lundsager, P., Bindner, H., Cronin, T., Nørgård, P., Ruddell, A., Perujo, A., Douglas, K., Rodrigues, C., Joyce, A., Tselepis, S., van der Borg, N., Nieuwenhout, F., Wilmot, N., Mattera, F., Sauer, D.U.: Operating conditions of batteries in off-grid renewable energy systems. Solar Energy 81(11), 1409–1425 (2007)

    Article  Google Scholar 

  71. Wenzl, H., Baring-Gould, I., Kaiser, R., Liaw, B.Y., Lundsager, P., Manwell, J., Ruddell, A., Svoboda, V.: Life prediction of batteries for selecting the technically most suitable and cost effective battery. Journal of Power Sources 144(2), 373–384 (2005) Selected papers from the Ninth European Lead Battery Conference

  72. Dufo-López, R., Lujano-Rojas, J.M., Bernal-Agustín, J.L.: Comparison of different lead-acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems. Appl. Energy 115, 242–253 (2014)

    Article  Google Scholar 

  73. Schiffer, J., Sauer, D.U., Bindner, H., Cronin, T., Lundsager, P., Kaiser, R.: Model prediction for ranking lead-acid batteries according to expected lifetime in renewable energy systems and autonomous power-supply systems. Journal of Power Sources 168(1), 66–78 (2007) 10th EUROPEAN LEAD BATTERY CONFERENCE

  74. Manjitha, L., Kumar, R.G., Kannan, S.: Lead acid based low voltage mild hybrid application in india — merits and challenges. In: 2017 IEEE Transportation Electrification Conference (ITEC-India), pp. 1–5 (Dec 2017)

  75. Furukawa, J., Takada, T., Mangahara, T., Lam, L.T.: Development of the flooded-type ultrabattery for micro-hev applications. ECS Trans. 16(34), 27–34 (2009)

    Article  Google Scholar 

  76. Eletrobras: Especificações técnicas dos programas para atendimento às regiões remotas dos sistemas isolados no âmbito do programa luz para todos (jul 2017)

  77. Spiers, D.: Chapter iib-2 - batteries in pv systems. In: McEvoy, A., Markvart, T., Castañer, L. (eds.) Practical Handbook of Photovoltaics (Second Edition), 2nd edn, pp. 721–776. Academic Press, Boston (2012)

    Chapter  Google Scholar 

  78. Hammouche, A., Thele, M., Sauer, D.U.: Analysis of gassing processes in a vrla/spiral wound battery. J. Power Sour. 158(2), 987–990 (2006)

    Article  Google Scholar 

  79. Concordia University. Lead acid batteries (dec 2016)

  80. Moseley, P.T., Garche, J., Parker, C.D., Rand, D.A.J.: Valve-Regulated Lead-Acid Batteries, vol. 1. Elsevier, Amsterdam (2004)

    Google Scholar 

  81. Lazard. Lazard’s levelized cost of storage - version 4.0 (dec 2018)

  82. Zsiborács, H., Baranyai, N.H., Vincze, A., Haber, I., Pintér, G.: Economic and technical aspects of flexible storage photovoltaic systems in europe. Energies, 11, 06 (2018)

  83. Anisie, A., Boshell, F.: Behind-the-meter batteries. In: Innovation landscape brief, Abu Dhabi (2019). IRENA

  84. IEC. Electrical energy storage (2011)

  85. Hannan, M.A., Hoque, M.M., Hussain, A., Yusof, Y., Ker, P.J.: State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations. IEEE Access 6, 19362–19378 (2018)

    Article  Google Scholar 

  86. Sattar, A., Al-Durra, A., Caruana, C., Debouza, M., Muyeen, S.M.: Testing the performance of battery energy storage in a wind energy conversion system. IEEE Trans. Ind. Appl. 56(3), 3196–3206 (2020)

    Article  Google Scholar 

  87. Han, X., Lu, L., Zheng, Y., Feng, X., Li, Z., Li, J., Ouyang, M.: A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 1, 100005 (2019)

    Article  Google Scholar 

  88. Zubi, G., Dufo-López, R., Carvalho, M., Pasaoglu, G.: The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018)

    Article  Google Scholar 

  89. Groot, J., Swierczynski, M., Stan, A.I., Kær, S.K.: On the complex ageing characteristics of high-power lifepo4/graphite battery cells cycled with high charge and discharge currents. J. Power Sour. 286, 475–487 (2015)

    Article  Google Scholar 

  90. Stroe, D.-I., Świerczyński, M., Stan, A.-I., Teodorescu, R., Andreasen, S.J.: Accelerated lifetime testing methodology for lifetime estimation of lithium-ion batteries used in augmented wind power plants. IEEE Trans. Ind. Appl. 50(6), 4006–4017 (2014)

    Article  Google Scholar 

  91. Swierczynski, M., Stroe, D.-I., Stan, A.-I., Teodorescu, R., Kær, S.K.: Lifetime estimation of the nanophosphate \(\text{ LiFePO}_{4}\text{/C }\) battery chemistry used in fully electric vehicles. IEEE Trans. Ind. Appl. 51(4), 3453–3461 (2015)

    Article  Google Scholar 

  92. Beltran, H., Ayuso, P., Pérez, E.: Lifetime expectancy of li-ion batteries used for residential solar storage. Energies 13(3), (2020)

  93. Spitthoff, Lena, L., Jacob J., Pollet, B.G., Burheim, O.S.: Lifetime Expectancy of Lithium-Ion Batteries, pp. 157–180. Springer International Publishing (2020)

  94. Wu, Z., Kong, D.: Comparative life cycle assessment of lithium-ion batteries with lithium metal, silicon nanowire, and graphite anodes. Clean Technol. Environ. Policy 20(6), 1233–1244 (2018)

    Article  Google Scholar 

  95. Lighting Global. Lithium-ion batteries part i: General overview and 2019 update (2011)

  96. Battery storage for renewables: Market status and technology outlook. Technical report, International Renewable Energy Agency (2015). ISBN: 978-92-95111-54-7

  97. Breeze, P.: Chapter 4 - large-scale batteries. In: Breeze, Paul (ed.) Power System Energy Storage Technologies, pp. 33 – 45. Academic Press (2018)

  98. Giulianini, M., Dart, M.: Flow battery versatility: Adapting the battery to the specific application. In: 2017 IEEE International Telecommunications Energy Conference (INTELEC), pp. 303–306 (2017)

  99. Bhuiyan, F.A., Yazdani, A.: Energy storage technologies for grid-connected and off-grid power system applications. In: 2012 IEEE Electrical Power and Energy Conference, pp. 303–310 (2012)

  100. Lawder, M.T., Suthar, B., Northrop, P.W.C., De, S., Hoff, C.M., Leitermann, O., Crow, M.L., Santhanagopalan, S., Subramanian, V.R.: Battery energy storage system (bess) and battery management system (bms) for grid-scale applications. Proc. IEEE 102(6), 1014–1030 (2014)

    Article  Google Scholar 

  101. Vanýsek, P., Novák, V.: Redox flow batteries as the means for energy storage. J. Energy Storage 13, 435–441 (2017)

    Article  Google Scholar 

  102. Evans, A., Strezov, V., Evans, T.J.: Assessment of utility energy storage options for increased renewable energy penetration. Renew. Sustain. Energy Rev. 16(6), 4141–4147 (2012)

    Article  Google Scholar 

  103. Faias, S., Sousa, J., Castro, R.: Embedded Energy Storage Systems in the Power Grid for Renewable Energy Sources Integration, pp. 63–88. InTech Open, 12 (2009)

  104. Li, J., Hu, D., Mu, G., Wang, S., Zhang, Z., Zhang, X., Lv, X., Li, D., Wang, J.: Optimal control strategy for large-scale vrb energy storage auxiliary power system in peak shaving. International Journal of Electrical Power ’I&’ Energy Systems 120, 106007 (2020)

  105. Jarnut, M., Benysek, G., Wermiński, S., Waśkowicz, B.: Experimental investigation on properties of small-scalle flow battery. In: 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), pp. 1–6 (2016)

  106. Akinyele, D.O., Rayudu, R.K.: Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 8, 74–91 (2014)

    Google Scholar 

  107. Shen, P.K., Wang, C.-Y., Sun, X., Zhang, J.: Electrochemical energy: advanced materials and technologies. CRC Press (2016). ISBN: 9781482227284

  108. Green, A.: Chapter 10 - stationary applications. iv. the role of nickel-cadmium batteries. In: Broussely, M., Pistoia, G. (eds.) Ind. Appl. Batter., pp. 547–571. Elsevier, Amsterdam (2007)

    Google Scholar 

  109. Luo, X., Wang, J., Dooner, M., Clarke, J.: Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137, 511–536 (2015)

    Article  Google Scholar 

  110. Tamyurek, B., Nichols, D.K., Demirci, O.: The nas battery: a multifunction energy storage system. In: 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491), volume 4, pp. 1991–1996 Vol. 4, (July 2003)

  111. Kamibayashi, M., Nichols, D.K., Oshima, T.: Development update of the nas battery. In: IEEE/PES Transmission and Distribution Conference and Exhibition, volume 3, pp. 1664–1668 vol.3 (2002)

  112. Cadex Electronics. Battery university (2011)

  113. Baes, K., Kolk, M., Carlot, F., Merhaba, A., Ito, Y.: Future of batteries (may 2018)

  114. Neto, P.B.L., Saavedra, O.R., de Souza Ribeiro, L.A.: A dual-battery storage bank configuration for isolated microgrids based on renewable sources. IEEE Trans. Sustain. Energy 9(4), 1618–1626 (2018)

    Article  Google Scholar 

  115. de Souza Ribeiro, L.A., Saavedra, O.R., de Lima, S.L., de Matos, J.: Isolated micro-grids with renewable hybrid generation: The case of lençóis island. IEEE Trans. Sustain. Energy 2(1), 1–11 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support of Companhia Paulista de Força e Luz, CNPq and FAPEMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denisson Q. Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, D.Q., Saavedra, O.R., Santos-Pereira, K. et al. A critical review of energy storage technologies for microgrids. Energy Syst (2021). https://doi.org/10.1007/s12667-021-00464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-021-00464-6

Keywords

Navigation